首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Differentiation is the process by which tissues/organs take on their final, physiologically functional form. This process is mediated in part by the silencing of embryonic genes and the activation of terminal, differentiation gene products. Mammalian kidney development is initiated when the Wolffian duct branches and invades the overlying metanephric mesenchyme. The newly formed epithelial bud, known as the ureteric bud, will continue to branch ultimately differentiating into the collecting duct system and ureter. Here, we show that Hoxb7-Cre mediated removal of β-catenin from the mouse Wolffian duct epithelium leads to the premature expression of gene products normally associated with the differentiated kidney collecting duct system including the water channel protein, Aquaporin-3 and the tight junction protein isoform, ZO-1α+. Mutant cells fail to maintain expression of some genes associated with embryonic development, including several mediators of branching morphogenesis, which subsequently leads to kidney aplasia or hypoplasia. Reciprocally, expression of a stabilized form of β-catenin appears to block differentiation of the collecting ducts. All of these defects occur in the absence of any effects on the adherens junctions. These data indicate a role for β-catenin in maintaining cells of the Wolffian ducts and the duct derived ureteric bud/collecting duct system in an undifferentiated or precursor state.  相似文献   

4.
During development of the urogenital tract, fibroblast growth factor 8 (Fgf8) is expressed in mesonephric tubules, but its role in this tissue remains undefined. An evaluation of previously generated T-Cre-mediated Fgf8-deficient mice (T-Cre; Fgf8(flox/Δ2,3) mice), which lack Fgf8 expression in the mesoderm, revealed that the cranial region of the Wolffian duct degenerated prematurely and the cranial mesonephric tubules were missing. As a result, the epididymis, vas deferens and efferent ductules were largely absent in mutant mice. Rarb2-Cre was used to eliminate FGF8 from the mesonephric tubules but to allow expression in the adjacent somites. These mutants retained the cranial end of the Wolffian duct and formed the epididymis and vas deferens, but failed to elaborate the efferent ductules, indicating that Fgf8 expression by the mesonephric tubules is required specifically for the formation of the ductules. Ret knockout mice do not form the ureteric bud, a caudal outgrowth of the Wolffian duct and progenitor for the collecting duct network in the kidney, but they do develop the cranial end normally. This indicates that Fgf8, but not Ret, expression is essential to the outgrowth of the cranial mesonephric tubules from the Wolffian duct and to the development of major portions of the sex accessory tissues in the male reproductive tract. Mechanistically, FGF8 functions upstream of Lhx1 expression in forming the nephron, and analysis of Fgf8 mutants similarly shows deficient Lhx1 expression in the mesonephric tubules. These results demonstrate a multifocal requirement for FGF8 in establishing the male reproductive tract ducts and implicate Lhx1 signaling in tubule elongation.  相似文献   

5.
The murine Lbx2 gene is a member of the ladybird family of homeobox genes, which is expressed in the developing urogenital system, eye, and brain. Using transgenic mice, we demonstrate that 9 kb of the 5' flanking region of mouse Lbx2 is able to direct expression of a reporter gene in a tissue-specific manner recapitulating the endogenous expression pattern. This regulatory region provides a novel reagent allowing for transgenic expression in the developing urogenital ridge. In addition, we describe the identification of the human homologue, LBX2. Comparison of the human LBX2 and mouse Lbx2 sequences upstream of the coding regions reveals sequence conservation suggesting conserved regulatory regions. Both the human LBX2 and the mouse Lbx2 genes have similar genomic structures and are composed of two exons separated by an intron. We mapped the mouse Lbx2 gene to 35 cM on chromosome 6 and the human LBX2 gene to a homologous region of chromosome 2p13. This is a candidate region for several inherited disorders, including Alstr?m syndrome, a disorder that includes ocular, urogenital, and renal abnormalities. Given the expression pattern of Lbx2, the chromosomal location in humans, and the potential function of mammalian ladybird genes, we have begun to analyze patients with ocular disorders and those with Alstr?m syndrome for mutations in LBX2. Although polymorphisms were identified, our results indicate that mutations in the coding region of LBX2 do not account for Alstr?m syndrome in the six kindreds analyzed.  相似文献   

6.
7.
The ampulla ureter and ampulla urogenital/uriniferous papilla represent differing morphologies of the caudal urogenital ducts in snakes. The ampulla ureter is an enlarged portion of the caudal extremity of the ureter that communicates the cranial regions of the ureter and the ductus deferens/Wolffian duct to the urodaeum. The ampulla urogenital/uriniferous papilla is an enlarged pouch, distinct from the ureter, which communicates the ureter and ductus deferens/Wolffian duct to the urodaeum. Although functional differences of these two structures are unknown, the ampulla urogenital/uriniferous papilla may have evolved for urine storage in males and females, and secondarily evolved a reproductive function in males. The most parsimonious optimization of the ampulla ureter and ampulla urogenital/uriniferous papilla indicates that the ampulla ureter is the ancestral state in snakes. Examining the presence or absence of the ampulla ureter and ampulla urogenital/uriniferous papilla in snakes on conflicting caenophidian phylogenies results in two hypotheses for the evolution of these variant morphologies: (1) The ampulla urogenital/uriniferous papilla evolved from the ampulla ureter independently in the Colubroidea and Elapoidea with subsequent losses of the ampulla urogenital/uriniferous papilla in the Elapoidea and (2) a single transition from the ampulla ureter to the ampulla urogenital/uriniferous papilla on the branch leading to the Colubroidea + Elapoidea with subsequent losses of the ampulla urogenital/uriniferous papilla in the Elapoidea and Colubroidea. The presence of the ampullae urogenital/uriniferous papilla in only the Colubroidea and Elapoidea highlights the affinity of these two taxonomic groups, a relationship that is strongly supported in published cladograms produced with molecular datasets.  相似文献   

8.
9.
10.
Abstract : Choline acetyltransferase (ChAT) is a specific phenotypic marker of cholinergic neurons. Previous reports showed that different upstream regions of the ChAT gene are necessary for cell type-specific expression of reporter genes in cholinergic cell lines. The identity of the mouse ChAT promoter region controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo is not known. We characterized a promoter region of the mouse ChAT gene in transgenic mice, using β-galactosidase ( LacZ ) as a reporter gene. A 3,402-bp segment from the 5'-untranslated region of the mouse ChAT gene (from -3,356 to +46, +1 being the translation initiation site) was sufficient to direct the expression of LacZ to selected neurons of the nervous system ; however, it did not provide complete cholinergic specificity. A larger fragment (6,417 bp, from -6,371 to +46) of this region contains the requisite regulatory elements that restrict expression of the LacZ reporter gene only in cholinergic neurons of transgenic mice. This 6.4-kb DNA fragment encompasses 633 bp of the 5'-flanking region of the mouse vesicular acetylcholine transporter (VAChT), the entire open reading frame of the VAChT gene, contained within the first intron of the ChAT gene, and sequences upstream of the start coding sequences of the ChAT gene. This promoter will allow targeting of specific gene products to cholinergic neurons to evaluate the mechanisms of diseases characterized by dysfunction of cholinergic neurons and will be valuable in design strategies to correct those disorders.  相似文献   

11.
12.
13.
14.
15.
16.
DNA methylation at CpG sequences is involved in tissue-specific and developmentally regulated gene expression. The Sry (sex-determining region on the Y chromosome) gene encodes a master protein for initiating testis differentiation in mammals, and its expression is restricted to gonadal somatic cells at 10.5-12.5 days post-coitum (dpc) in the mouse. We found that in vitro methylation of the 5'-flanking region of the Sry gene caused suppression of reporter activity, implying that Sry gene expression could be regulated by DNA methylation-mediated gene silencing. Bisulfite restriction mapping and sodium bisulfite sequencing revealed that the 5'-flanking region of the Sry gene was hypermethylated in the 8.5-dpc embryos in which the Sry gene was not expressed. Importantly, this region was specifically hypomethylated in the gonad at 11.5 dpc, while the hypermethylated status was maintained in tissues that do not express the Sry gene. We concluded that expression of the Sry gene is under the control of an epigenetic mechanism mediated by DNA methylation.  相似文献   

17.
Today it is generally held that the vagina develops from sinovaginal bulbs and that the lower third of the definitive vagina is derived from the urogenital sinus. Here we show that the entire vagina arises by downward growth of Wolffian and Müllerian ducts, that the sinovaginal bulbs are in fact the caudal ends of the Wolffian ducts, and that vaginal development is under negative control of androgens. We designed a genetic experiment in which the androgen receptor defect in the Tfm mouse was used to examine the effects of androgens. Vaginal development was studied by 3D reconstruction in androgen-treated female embryos and in complete androgen-insensitive littermates. In androgen-treated females, descent of the genital ducts was inhibited, and a vagina formed in androgen-insensitive Tfm embryos as it does in normal females. By immmunohistochemical localization of the androgen receptor in normal mouse embryos, we demonstrated that the androgen receptor was expressed in Wolffian duct and urogenital sinus-derived structures, and was entirely absent in the Müllerian duct derivatives. We conclude that the Wolffian ducts are instrumental in conveying the negative control by androgens on vaginal development. The results are discussed under evolutionary aspects at the transition from marsupial to eutherian mammals.  相似文献   

18.
19.
20.
We systematically searched for sequences influencing the expression of the mouse monocyte chemoattractant protein-1 (MCP-1) gene (Scya2) by mapping DNase I hypersensitive sites (HS) in the chromatin of mesangial cells in a 40-kb interval around the gene. We found nine HS located between -24 kb and +12.7 kb. Three HS coincided with previously known regulatory sequences (HS-2.4, HS-1.0, and HS-0.2). We tested two of the previously unknown HS located far upstream of Scya2 (HS-19.4 and HS-16.3) in transfection experiments using luciferase reporter constructs and mouse mesangial cells as recipients. In transient transfections, both HS had a moderate effect on basal promoter activity as well as promoter activity stimulated by tumor necrosis factor-alpha. In stable transfection experiments, we found much higher activity. A DNA fragment containing HS-19.4 and HS-16.3 caused a considerable increase in the number of stably integrated luciferase copies. We determined the nucleotide sequence of the 5' flanking region to -28.6 kb. Computer-assisted sequence analysis did not yield evidence of an additional gene. These HS are located within the 5' flanking region of a gene cluster consisting of Scya2 (MCP-1), Scya7 (MCP-3), Scya11 (eotaxin), Scya12 (MCP-5), and Scya8 (MCP-2). This report represents the first comprehensive chromatin analysis of the mouse MCP-1 locus leading to the identification of a complex regulatory region located far upstream of Scya2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号