首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human neutrophils aggregate and release mediators of inflammation, such as active oxygen species and lysosomal enzymes, when exposed to the chemoattractant, fMet-Leu-Phe, or the tumor promotor, phorbol myristate acetate. In order to 'stage' events which may lead to such neutrophil responses, we determined the temporal relationship between stimulus-induced changes in the endogenous phospholipids phosphatidylinositol (PI) and phosphatidic acid, the mobilization of calcium, and the onset of aggregation and generation of superoxide anion during the initial 2 min of cell activation. Within 5 s after addition of fMet-Leu-Phe (10(-7) M) neutrophils accumulated phosphatidic acid and the levels of PI decreased, as determined by two-dimensional thin-layer chromatography and phosphorus determinations. By 5 s, phosphatidic acid levels rose approximately 3.5-fold and at 15 s the loss of PI exceeded the quantity of phosphatidic acid generated. In response to phorbol myristate acetate (1 microgram/ml), however, changes in PI or phosphatidic acid were not observed until after 60 s. Accumulation of phosphatidic acid in fMet-Leu-Phe-stimulated cells was not inhibited by chelation of extracellular calcium. Neutrophils exposed to either fMet-Leu-Phe or phorbol myristate acetate also showed rapid decrements in fluorescence of cell-associated chlorotetracycline (used as an indirect probe of mobilization of intracellular membrane-associated calcium) and took up 45Ca2+ from the extracellular medium (under 60 s). The results indicate that changes in calcium mobilization, together with the alterations in phospholipid metabolism (under 5 s) anteceded aggregation and the generation of O2-. (10-15 s) induced by fMet-Leu-Phe. In contrast, when neutrophils were exposed to phorbol myristate acetate, changes in PI and phosphatidic acid (over 60 s) were observed after the mobilization of calcium (under 5 s) and the onset of O2-. generation and aggregation (30-35 s).  相似文献   

2.
Stimulation of the neutrophils with fMet-Leu-Phe inhibits the rise in intracellular concentration of free calcium produced by the subsequent addition of platelet-activating factor. This deactivation is not observed in pertussis toxin treated cells. In addition, preincubation of the cells with the protein kinase C activator phorbol 12-myristate 13-acetate for three minutes abolishes completely the rise in calcium produced by platelet-activating factor. This inhibition is prevented by the addition of the protein kinase C inhibitor 1-(5-isoquinoline-sulfonyl)-2-methyl piperazine prior to the addition of the phorbol ester. Phorbol 12-myristate 13-acetate, at a concentration that does not produce significant inhibition, accelerates the rate of calcium removal from the cytoplasm, and this is abolished by the protein kinase C inhibitor. In contrast, the deactivation by fMet-Leu-Phe is not prevented by the protein kinase C inhibitor. The results presented here suggest that the protein kinase C system may regulate the opening by platelet-activating factor of possible plasma membrane associated pertussis toxin independent calcium channels and/or the binding of platelet-activating factor to the receptors. In addition, protein kinase C activation increases the rates of the calcium efflux pump and/or calcium sequestering by intracellular organelles. The most simple and straightforward explanation of the observed deactivation by fMet-Leu-Phe is that the addition of fMet-Leu-Phe to neutrophils stimulates the production of platelet-activating factor which then binds to and deactivates the receptors.  相似文献   

3.
Flow cytometry (FCM) has been used extensively to analyze various biological properties of the cell. In this report, we describe a method by which FCM was used to determine the light scattering profile of a mixed population of pigmented and non-pigmented melanocytes, plus its subsequent use for the sorting and separation of the two cell types. In addition, the relative peroxide content in pigmented and non-pigmented melanocytes was compared by flow cytometry. Cultured avian melanocytes from a pigmented control and from three genetically distinct albino sources were studied. FCM analysis of forward versus side light scatter within a mixed suspension of pigmented and amelanotic melanocytes distinguished two overlapping populations of cells. Sorting of these two populations demonstrated that the population exhibiting much side and minimal forward light scatter was primarily pigmented melanocytes, while conversely the population exhibiting less side and more forward scatter was principally non-pigmented cells. These two melanocyte types also demonstrated differences in levels of endogenous peroxides. The intracellular content of peroxide in the two subpopulations of cells was measured utilizing the nonfluorescent compound, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which within the cell is oxidized by intracellular peroxides to a fluorescent dichlorofluorescein (DCF). Non-pigmented albino melanocytes had the highest quantity of endogenous peroxides, while heavily pigmented cells had considerably less peroxide-related fluorescence. The amount of this DCF fluorescence could be enhanced by increasing concentrations of DCF used in the assay. These flow cytometric methods are useful for isolating and culturing subpopulations of melanocytes expressing various pigment levels and to investigate the relationship between melanin and its precursors with hydrogen and lipid peroxides in melanocytes.  相似文献   

4.
Human neutrophils aggregate and release mediators of inflammation, such as active oxygen species and lysosomal enzymes, when exposed to the chemoattractant, fMet-Leu-Phe, or the tumor promotor, phorbol myristate acetate. In order to ‘stage’ events which may lead to such neutrophil responses, we determined the temporal relationship between stimulus-induced changes in the endogenous phospholipids phosphatidylinositol (PI) and phosphatidic acid, the mobilization of calcium, and the onset of aggregation and generation of superoxide anion during the initial 2 min of cell activation. Within 5 s after addition of fMet-Leu-Phe (10?7 M) neutrophils accumulated phosphatidic acid and the levels of PI decreased, as determined by two-dimensional thin-layer chromatography and phosphorus determinations. By 5 s, phosphatidic acid levels rose approximately 3.5-fold and at 15 s the loss of PI exceeded the quantity of phosphatidic acid generated. In response to phorbol myristate acetate (1 μg/ml), however, changes in PI or phosphatidic acid were not observed until after 60 s. Accumulation of phosphatidic acid in fMet-Leu-Phe-stimulated cells was not inhibited by chelation of extracellular calcium. Neutrophils exposed to either fMet-Leu-Phe or phorbol myristate acetate also showed rapid decrements in fluorescence of cell-associated chlorotetracycline (used as an indirect probe of mobilization of intracellular membrane-associated calcium) and took up 45Ca2+ from the extracellular medium (under 60 s). The results indicate that changes in calcium mobilization, together with the alterations in phospholipid metabolism (under 5 s) anteceded aggregation and the generation of O?2 (10–15 s) induced by fMet-Leu-Phe. In contrast, when neutrophils were exposed to phorbol myristate acetate, changes in PI and phosphatidic acid (over 60 s) were observed after the mobilization of calcium (under 5 s) and the onset of O?2 generation and aggregation (30–35 s).  相似文献   

5.
Receptors for a chemotactic peptide (fMet-Leu-Phe) in guinea pig neutrophils were primarily coupled to phospholipase C catalyzing breakdown of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate, which was in turn responsible for intracellular Ca2+ mobilization. These early responses of neutrophils to fMet-Leu-Phe, eventually leading to O2- generation, were abolished by prior exposure of cells to islet-activating protein (IAP), pertussis toxin, which had been reported to bring about ADP-ribosylation of a membrane Mr = 41,000 protein (Okajima, F., and Ui, M. (1984) J. Biol. Chem. 259, 13863-13871). The IAP substrate, probably the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase (Ni) or an analogous protein, is hence proposed to mediate fMet-Leu-Phe receptor-linked activation of the phospholipase C. In support of this proposal, A23187 and phorbol myristate acetate which stimulate arachidonate release or O2- generation by-passing these early processes of signaling were effective in IAP-treated cells as well. Release of arachidonic acid and accumulation of inositol 1-monophosphate in delayed response to fMet-Leu-Phe were also abolished by the IAP treatment of cells, despite the fact that slowly-onset inflow of Ca2+ which must be responsible for these delayed responses was observed in these IAP-treated cells. Thus, the IAP substrate may play an additional role in Ca2+-dependent activation of somehow compartmentalized phospholipases.  相似文献   

6.
[3H]Arachidonic acid is released after stimulation of rabbit neutrophils with fMet-Leu-Phe or platelet-activating factor (PAF). The release is rapid and dose-dependent, and is inhibited in phorbol 12-myristate 13-acetate (PMA)-treated rabbit neutrophils. The protein kinase C (PKC) inhibitor 1-(5-isoquinoline-sulphonyl)-2-methylpiperazine (H-7) prevents this inhibition. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. [3H]Arachidonic acid release, but not the rise in the concentration of intracellular Ca2+, is inhibited in pertussis-toxin-treated neutrophils stimulated with PAF. The diacylglycerol kinase inhibitor R59022 increases the concentration of diacylglycerol and potentiates [3H]arachidonic acid release in neutrophils stimulated with fMet-Leu-Phe. This potentiation is not inhibited by H-7. These results suggest several points. (1) A rise in the intracellular concentration of free Ca2+ is not sufficient for arachidonic acid release in rabbit neutrophils stimulated by physiological stimuli. (2) A functional pertussis-toxin-sensitive guanine nucleotide regulatory protein and/or one or more of the changes produced by phospholipase C activation are necessary for arachidonic acid release produced by physiological stimuli. (3) Agents that stimulate PKC potentiate arachidonic acid release, and this potentiation is not inhibited by H-7. These agents produce their actions in part by direct membrane perturbation.  相似文献   

7.
In human neutrophils, superoxide is generated primarily within specialized oxidant-producing intracellular compartments. The present study employs a simple methodological approach to evaluate the intracellular movement of these structures in living human neutrophils. Using a CCD camera system, we monitored fluorescence in cells loaded with the succinimidyl ester of dichlorodihydrofluorescein diacetate, which is nonfluorescent until oxidized by reactive oxygen species. Fluorescence-positive intracellular compartments became detectable after neutrophils were stimulated with phorbol myristate acetate for 1 min. Further stimulation increased the intracellular compartments in both number and size in a time-dependent manner. Upon stimulation with phorbol myristate acetate, no fluorescence was seen in intracellular compartments of neutrophils isolated from patients with X-linked chronic granulomatous disease lacking gp91-phox, a membrane component of NADPH oxidase. The method enables tracking of the movement of a single oxidant-producing intracellular compartment following cell stimulation and visualization of the intracellular structures formed by fusion of oxidant-producing intracellular compartments with endocytotic vesicles and phagosomes. Therefore, it is considered to be an informative tool for evaluation of the intracellular dynamics of oxidant-producing intracellular compartments in living human neutrophils and may have a diagnostic value.  相似文献   

8.
Upon exposure to the bacterial chemotactic peptide fMet-Leu-Phe, human neutrophils release lysozyme and generate superoxide anions (O2.-). The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteine (Pam3Cys), which is derived from the N-terminus of bacterial lipoprotein, when attached to Ser-(Lys)4 [giving Pam3Cys-Ser-(Lys)4], activated O2.- formation and lysozyme release in human neutrophils with an effectiveness amounting to about 15% of that of fMet-Leu-Phe. Palmitic acid, muramyl dipeptide, lipopolysaccharide and the lipopeptides Pam3Cys-Ala-Gly, Pam3Cys-Ser-Gly, Pam3Cys-Ser, Pam3Cys-OMe and Pam3Cys-OH did not activate O2.- formation. Pertussis toxin, which ADP-ribosylates guanine-nucleotide-binding proteins (G-proteins) and functionally uncouples formyl peptide receptors from G-proteins, prevented activation of O2.- formation by fMet-Leu-Phe and inhibited Pam3Cys-Ser-(Lys)4-induced O2.- formation by 85%. Lipopeptide-induced exocytosis was pertussis-toxin-insensitive. O2.- formation induced by Pam3Cys-Ser-(Lys)4 and fMet-Leu-Phe was enhanced by cytochalasin B, by a phorbol ester and by a diacylglycerol kinase inhibitor. Addition of activators of adenylate cyclase and removal of extracellular Ca2+ inhibited O2.- formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 to different extents. Pam3Cys-Ser-(Lys)4 synergistically enhanced fMet-Leu-Phe-induced O2.- formation and primed neutrophils to respond to the chemotactic peptide at non-stimulatory concentrations. Our data suggest the following. (1) Pam3Cys-Ser-(Lys)4 activates neutrophils through G-proteins, involving pertussis-toxin-sensitive and -insensitive processes. (2) The signal transduction pathways activated by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but not identical. (3) In inflammatory processes, bacterial lipoproteins and chemotactic peptides may interact synergistically to activate O2.- formation, leading to enhanced bactericidal activity.  相似文献   

9.
The goal of this study was to determine the amount of reactive oxygen species (ROS) that arises inside cells irradiated in medium containing blood serum using the 2'7'-dichlorofluorescein (DCF) assay. DCF fluorescence in cells and medium was recorded on an MF44 Perkin Elmer fluorimeter, and fluorescence in cells only was recorded on a Partec flow-through cytometer. Human larynx tumor HEp-2 cells and lympholeukosis P388 cells were irradiated with X rays at a dose rate of 1.12 Gy/min. The factors (temperature, pH, serum concentration) affecting the oxidation of 2'7'-dichlorofluorescin (DCFH) to DCF were studied, and errors in the dichlorofluorescein assay of ROS were minimized. The amount of ROS registered by the DCF assay in cells was found to depend on the concentration of serum in the medium during irradiation. In the presence of 10% serum, radiation had no effect on the amount of detectable ROS. The effect of radiation on the formation of intracellular ROS was almost completely abolished if the irradiated medium was removed immediately after radiation exposure. The increase in the formation of ROS in cells irradiated in medium with a low serum content is due mainly to the radiolytic products of water that arise in medium and oxidize DCFH located in cells.  相似文献   

10.
The bioluminescent oxygen metabolite indicator protein pholasin was characterized with respect to the type and location of reactive oxygen metabolites detected in suspensions of stimulated human neutrophils. Whereas pholasin detected reactive oxygen metabolites from neutrophil suspensions stimulated with soluble agents, particulate stimulants were apparently not effective triggering agents for pholasin-dependent neutrophil chemiluminescence. Neutrophils stimulated with fMet-Leu-Phe (1 to 100 nmol/l) showed maximum pholasin-dependent chemiluminescence 45 to 60s after stimulation. The time of maximum chemiluminescence was virtually independent of fMet-Leu-Phe concentration. In contrast, the time to reach maximum light emission increased from 60s with 100 nmol/l phorbol ester to 295s with 1 nmol/l phorbol ester. Significant inhibition of stimulated chemiluminescence was caused by both superoxide dismutase (20 μg/ml, 80% inhibition) and reduction of the oxygen concentration in the incubation medium to less than 0.5 μmol/l (95% inhibition). In contrast, the myeloperoxidase inhibitor sodium azide (0.1 nmol/l) afforded only 50% inhibition of the pholasin-dependent neutrophil chemiluminescence. Our results show that pholasin detects superoxide radicals released from cells stimulated by soluble stimulants but not intracellular oxidative activity elicited by particulate stimulants.  相似文献   

11.
The addition of low concentrations (less than 10(-7) M) of the calcium ionophore A23187 to rabbit neutrophils releases the intracellular pool of calcium previously shown in radioactive steady-state and chlortetracycline fluorescence studies to be mobilized by chemotactic factors. A23187 at these concentrations elicits no functional responses from these cells. However, A23187, added before chemotactic factors such as fMet-Leu-Phe and leukotriene B4, inhibits the ability of the latter stimuli to induce, in the presence of cytochalasin B, an exocytotic release of the neutrophil's cytoplasmic granules. These results imply that the chemotactic-factor-induced release of intracellular calcium is a necessary event for the optimal activation of the neutrophils. Phorbol ester-induced neutrophil degranulation on the other hand is unaffected by exposure to A23187, thereby completely dissociating its mechanism of action from rises in cytoplasmic free calcium.  相似文献   

12.
Protein tyrosine phosphorylation in rabbit peritoneal neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. Stimulation of the neutrophils with chemotactic factor fMet-Leu-Phe (10 nM) caused rapid increases of tyrosine phosphorylation of several proteins with apparent molecular masses of (Group A) 54-58 kDa and 100-125 kDa and (Group B) 36-41 kDa. Stimulation of Group A proteins was observed by fMet-Leu-Phe (10 nM, maximum at 20 s) and A23187 (1 microM, 1 min). Stimulation of Group B proteins was observed by fMet-Leu-Phe (ED50 0.15 nM, 1 min), leukotriene B4 (ED50 0.15 nM, 1 min), phorbol 12-myristate 13-acetate (PMA) (ED50 25 ng/ml, 10 min) and partially by ionophore A23187 (1 microM, 1 min). Pretreatment of the cell with the protein kinase inhibitor H-7 (25 microM, 5 min) and PMA (0.1 microgram/ml, 3 min) partially inhibited the fMet-Leu-Phe effect. However, pretreatment of the cells with quin 2/AM (20 microM, 10 min) completely inhibited the fMet-Leu-Phe effect. The results indicate that rapid regulation of tyrosine phosphorylation is an early event occurring in stimulated neutrophils. Furthermore the effect of fMet-Leu-Phe on tyrosine phosphorylation may require Ca2+ mobilization and may partially require the activity of H-7-sensitive protein kinases.  相似文献   

13.
Signalling for increased cytoskeletal actin in neutrophils   总被引:3,自引:0,他引:3  
The addition of fMet-Leu-Phe, platelet-activating factor, leukotriene B4 or sodium propionate to rabbit neutrophils causes an increase in the amount of actin associated with the cytoskeletal actin. The increase is rapid, transient and inhibitable by pertussis toxin. On the other hand, the addition of phorbol 12-myristate 13-acetate or NH4Cl causes a pertussis toxin-insensitive increase in cytoskeletal actin. The effects of the phorbol ester and fMet-Leu-Phe are additive, and in the presence of the phorbol ester, the fMet-Leu-Phe induced effect declines to the level produced by the phorbol ester. These results suggest that: one of the signalling pathways for actin polymerization involves a guanine-nucleotide binding protein; actin polymerization mediated through this pathway is rapid, transient and inhibitable by pertussis toxin, and a second signalling pathway is independent of this guanine-nucleotide binding protein; actin polymerization, mediated by this second pathway, is somewhat slower, sustained and insensitive to pertussis toxin. These results are discussed in terms of a model which includes gelsolin, profilin and the pertussis toxin-sensitive guanine-nucleotide binding protein.  相似文献   

14.
Cetiedil, alpha-cyclohexyl-3-thiopheneacetic acid 2-(hexahydro-1H-azepin-1-yl)-ethyl ester, was found to inhibit the generation of superoxide (O2-) by porcine neutrophils exposed to various stimulators. The concentration of cetiedil required for 50% inhibition was about 45 microM when neutrophils were stimulated by phorbol myristate acetate. Cetiedil not only decreased the rate of generation of O2-, but prolonged the lag time prior to the production of O2-. The inhibitory effect of cetiedil on the O2(-)-generating activity of the NADPH oxidase in the membrane vesicles was less than that on whole cells; the concentration of cetiedil necessary for 50% inhibition was about 250 microM. To study the mechanism of cetiedil's effect on the membrane, the transmembrane potential of neutrophils and the intracellular free Ca2+ concentration were monitored by using fluorescence probes, diS-C3-(5), and quin-2, respectively. Cetiedil caused depolarization of the membrane potential and increased the intracellular free Ca2+. These results indicate that integrity of ionic distribution is necessary to activate the O2(-)-generating system of neutrophils.  相似文献   

15.
The protein kinase C inhibitor, staurosporine, inhibited NADPH oxidase activity of human neutrophils activated by phorbol myristate acetate. However, this inhibitor had no effect on either the initiation or the maximal rate of O2- secretion activated by the chemotactic peptide, fMet-Leu-Phe, but resulted in a more rapid termination of oxidant production. Similarly, staurosporine had no effect on the rapid (1 min) increase in luminol-dependent chemiluminescence activated by fMet-Leu-Phe, but the second (intracellular) phase of oxidant production was inhibited. The initial burst of oxidant production during phagocytosis was similarly protein kinase C-independent, but again the later phases of oxidase activity were staurosporine-sensitive. Neutrophils loaded with Quin-2 at concentrations sufficient to act as a Ca2+ buffer could not secrete O2- in response to fMet-Leu-Phe; although the initial (protein kinase C-independent) burst of luminol chemiluminescence was not observed in fMet-Leu-Phe-stimulated Ca2(+)-buffered cells, the second phase of (protein kinase C-dependent) oxidant production was largely unaffected. Hence, the initial burst of oxidant production activated by fMet-Leu-Phe, opsonized zymosan, and latex beads is independent of the activity of protein kinase C-dependent intracellular activation processes, but the activity of this kinase is required to extend or sustain the duration of oxidant production.  相似文献   

16.
The addition of the chemotactic factor fMet-Leu-Phe to cell homogenates causes a decrease in the pertussis toxin catalyzed ADP-ribosylation of a 41 kDa protein. The fMet-Leu-Phe induced decrease is not abolished in homogenates prepared from phorbol 12-myristate 13-acetate treated neutrophils. This decreased ribosylation probably reflects a dissociation of the GTP-binding protein oligomer that is not followed by association, possibly because of the release of the alpha-subunit into the suspending medium. Furthermore, fMet-Leu-Phe stimulates the binding of radiolabelled guanylylimidodiphosphate to membrane preparations. Again, the stimulated binding of guanylylimidodiphosphate is not affected by treating the intact neutrophils with phorbol 12-myristate 13-acetate. In addition leukotriene B4, platelet activating factor and fMet-Leu-Phe activate a high-affinity GTPase in membrane preparations. The basal level of this GTPase activity is dramatically inhibited in membrane preparations isolated from cells treated with phorbol 12-myristate 13-acetate. On the other hand, the fMet-Leu-Phe stimulated component is only marginally reduced. The present findings suggest that PMA does not prevent receptor G-protein interaction.  相似文献   

17.
The effect of magnesium (Mg)-deficient culture on endothelial cell susceptibility to oxidative stress was examined. Bovine endothelial cells were cultured in either control sufficient (0.8 mM) or deficient (0.4 mM) levels of MgCl2. Oxygen radicals were produced extracellularly by the addition of dihydroxyfumarate and Fe(3+)-ADP. Isolated Mg-deficient endothelial cells produced 2- to 3-fold higher levels of thiobarbituric acid (TBA)-reactive materials when incubated with this free radical system. Additional studies were performed using digitized video microscopy and 2',7'-dichlorofluorescein diacetate (DCFDA) as an intracellular indicator for oxidative events at the single cell level. In response to the exogenous oxidative stress, endothelial cells exhibited a time-dependent increase in fluorescence, suggestive of intracellular lipid peroxidation. The increase in cellular fluorescence began within 1 min of free radical addition; the Mg-deficient cells exhibited a more rapid increase in fluorescence than that of Mg-sufficient cells. In separate experiments, cellular viability was assessed using the Trypan blue exclusion assay. Mg deficiency increased cytotoxicity of the added oxyradicals, but the loss of cellular viability began to occur only after 15 min of free radical exposure, lagging behind the detection of intracellular oxidation products. These results suggest that increased oxidative endothelial cell injury may contribute to vascular injury during Mg deficiency.  相似文献   

18.
The short-term regulation of multidrug resistance-associated protein 3 (Mrp3/MRP3) by cAMP and PKC was investigated in sandwich-cultured rat and human hepatocytes and isolated perfused rat livers. The modulator glucagon (500 nM) and the phorbol ester PMA (0.1 muM) were utilized to increase intracellular cAMP and PKC levels, respectively. In glucagon-treated rat hepatocytes, efflux of the Mrp3 substrate 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF) increased approximately 1.5-fold, even in hepatocytes treated with the organic anion transporter (Oatp) inhibitor sulfobromophthalein (BSP). Confocal microscopy revealed more concentrated Mrp3 fluorescence in the basolateral membrane (less diffuse staining pattern) with glucagon treatment. PMA had no effect on Mrp3 activity or localization in sandwich-cultured rat hepatocytes. Glucagon and PMA treatment in isolated perfused rat livers resulted in a threefold increase (14 +/- 4.6 mul.min(-1).g liver(-1)) and a fourfold decrease (1.3 +/- 0.3 mul.min(-1).g liver(-1)) in CDF basolateral clearance compared with control livers (4.7 +/- 2.3 mul.min(-1).g liver(-1)), whereas CDF biliary clearance was not statistically different. In sandwich-cultured human hepatocytes, glucagon treatment resulted in a 1.3-fold increase in CDF efflux and a concomitant increase in MRP3 fluorescence in the basolateral membrane. In summary, cAMP and PKC appear to be involved in the short-term regulation of Mrp3/MRP3, as demonstrated by alterations in activity and localization in rat and human hepatocytes.  相似文献   

19.
Neutrophils from patients with chronic granulomatous disease (CGD) fail to produce a significant oxidative burst following stimulation. We have evaluated the use of flow cytometry and the dye 2',7'-dichlorofluorescein diacetate (DCF) for routine screening for deficiencies of neutrophil oxidative burst. A range for DCF fluorescence for phorbol myristate acetate stimulated and non-stimulated neutrophils was established based on data from 52 healthy adults. Samples from three patients with suspected neutrophil dysfunction, three patients with X-linked CGD, and one patient with autosomal recessive (AR) CGD were evaluated with both the DCF assay and the quantitative nitroblue tetrazolium dye reduction (NBT) test. For the DCF test, the ratio of mean fluorescence intensity of stimulated to non-stimulated neutrophils was less than 5 for CGD patients and from 16 to greater than 50 for healthy individuals. With the DCF test, two populations of neutrophils could be identified in samples from four carriers of X-linked CGD, although two carriers of AR CGD had NBT and DCF results in the normal range. Our data suggest the DCF test is a sensitive and convenient method for detecting CGD.  相似文献   

20.
Effect of botulinum D toxin on neutrophils   总被引:1,自引:0,他引:1  
Activated botulinum D toxin ADP-ribosylates a 22 kDa molecular weight protein in homogenates obtained by sonication of a suspension of rabbit peritoneal neutrophils. The ADP-ribosylation catalyzed by activated botulinum D toxin is inhibited in homogenates obtained from cells pretreated with the toxin, suggesting that it is able to enter into these cells and be activated by them. The rise in intracellular concentration of free calcium in toxin treated cells stimulated by fMet-Leu-Phe is similar to that found in control cells. The basal concentration of intracellular free calcium is significantly elevated in neutrophils treated with the intact but not with the activated form of the botulinum D toxin. Superoxide generation in control and native toxin treated cells stimulated with fMet-leu-Phe, phorbol 12-myristate 13-acetate or opsonized zymosan is the same. The release of beta-glucosaminidase produced by fMet-Leu-Phe or Concanavalin A in botulinum D toxin treated neutrophils was slightly higher than the corresponding release in control cells. Furthermore, the fMet-Leu-Phe-induced increase in the amount of actin associated with the cytoskeleton is not inhibited by botulinum D toxin. These results suggest that the 22 kDa protein which can be ADP-ribosylated by botulinum D toxin is not involved in these stimulated neutrophil responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号