首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
朊病毒病是一类具有传染性、不可逆且致命的神经退行性疾病,其致病机制为体内正常编码的细胞型朊蛋白(cellular prion protein,PrP~C)构象发生变化,形成了具有感染性的异常痒病型朊病毒(scrapie prion protein,PrP~(Sc)),但具体机制不清楚,目前为止尚无有效治疗方法。微小RNA(microRNA,miRNA)可在转录水平调控细胞蛋白表达,对神经系统发育及功能起重要作用。近年来,对一些特定miRNA在朊病毒病中相应调控机制、自发免疫、炎症信号转导及靶基因预测方面的研究可为治疗朊病毒病提供新的角度。本文就miRNA在朊病毒病发生中的相关研究进展进行综述,并详细探讨其中研究较为深入的miRNA。  相似文献   

2.
Intracellular filamentous inclusions made of either the microtubule-associated protein tau or the protein alpha-synuclein define the majority of cases of neurodegenerative disease. Mutations in the tau gene in familial forms of frontotemporal dementia and in the alpha-synuclein gene in familial cases of Parkinson's disease have provided causal links between the dysfunction of these proteins and neurodegeneration. Over the past year, several novel tau gene mutations have been identified and more has been learned about possible mechanisms by which tau gene mutations lead to frontotemporal dementia. Experimental animal models have provided a link between tau filament formation and nerve cell degeneration. Along similar lines, animal models have been produced that result in the formation of alpha-synuclein filaments and the degeneration of dopaminergic nerve cells. Building on previous work, synthetic alpha-synuclein filaments have been shown to exhibit the characteristics of amyloid.  相似文献   

3.
The most common degenerative diseases of the human brain are characterized by the presence of abnormal filamentous inclusions in affected nerve cells and glial cells. These diseases can be grouped into two classes, based on the identity of the major proteinaceous components of the filamentous assemblies. The filaments are made of either the microtubule-associated protein tau or the protein alpha-synuclein. Importantly, the discovery of mutations in the tau gene in familial forms of frontotemporal dementia and of mutations in the alpha-synuclein gene in familial forms of Parkinson's disease has established that dysfunction of tau protein and alpha-synuclein can cause neurodegeneration.  相似文献   

4.
M Enamul Kabir 《朊病毒》2014,8(1):111-116
There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrPC) to a misfolded pathogenic conformer (PrPSc). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrPSc. Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrPSc particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrPSc conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrPSc. Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.  相似文献   

5.
Many studies have implicated phosphorylated tau in the Alzheimer disease process. However, the cellular fate of phosphorylated tau has only recently been described. Recent work has shown that tau phosphorylation at substrate sites for the kinases Cdk5 and GSK3-beta can trigger the binding of tau to the chaperones Hsc70 and Hsp27. The binding of phosphorylated tau to Hsc70 implied that the complex may be a substrate for the E3 ligase CHIP and this possibility was experimentally verified. The presence of this system in cells suggests that phosphorylated tau may hold toxic dangers for cell viability, and the response of the cell is to harness a variety of protective mechanisms. These include binding to chaperones, which may prevent more toxic conformations of the protein, ubiquitination which will direct the protein to the proteasome, segregation of tau aggregates from the cellular machinery, and recruitment of Hsp27 which will confer anti-apoptotic properties to the cell.  相似文献   

6.
AD (Alzheimer's disease) is a progressive neurodegenerative disorder characterized by the extracellular accumulation of amyloid β-peptide and the intracellular accumulation of tau. Although there is much evidence linking tau to neurodegeneration, the precise mechanism of tau-mediated neurotoxicity remains elusive. The presence of tau-positive pre-tangle neurons lacking neurofibrillary tangles has been reported in AD brain tissue. In order to study this non-fibrillar tau, we generated a novel monoclonal antibody, named TOC1 (tau oligomeric complex 1), which selectively labels tau dimers and oligomers, but does not label filaments. Time-course analysis and antibody labelling indicates that oligomers appear as an early event in AD pathogenesis. Using a squid axoplasm assay, we have demonstrated that aggregated tau inhibits anterograde FAT (fast axonal transport), whereas monomeric tau has no effect. This inhibition requires a small stretch of N-terminal amino acids termed the PAD (phosphatase-activation domain). Using a PAD-specific antibody, TNT1 (tau N-terminal 1), we demonstrate that PAD exposure is increased in diseased neurons and this leads to an increase in FAT inhibition. Antibody co-labelling with the early-AD marker AT8 indicates that, similar to TOC1, TNT1 expression represents an early event in AD pathogenesis. Finally, the effects of the molecular chaperone Hsp70 (heat-shock protein 70) were also investigated within the squid axoplasm assay. We illustrate that Hsp70 preferentially binds to tau oligomers over filaments and prevents anterograde FAT inhibition observed with a mixture of both forms of aggregated tau. Together, these findings support the hypothesis that tau oligomers are the toxic form of tau in neurodegenerative disease.  相似文献   

7.
Prolonged survival of a typical postmitotic neuron hinges on a balance between multiple processes, among these are a sustenance of ATP production and protection against reactive oxygen species. In neuropathological conditions, mitochondrial defects often lead to both a drop in ATP levels, as well as increase reactive oxygen species production from inefficient electron transport processes and NADPH-oxidases activities. The former often resulted in the phenomenon of compensatory aerobic glycolysis. The latter stretches the capacity of the cell's redox buffering capacity, and may lead to damages of key enzymes involved in energy metabolism. Several recent reports have indicated that enhancing glucose availability and uptake, as well as increasing glycolytic flux via pharmacological or genetic manipulation of glycolytic enzymes, could be protective in animal models of several major neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Activation of canonical Wnt signaling, which improves disease symptoms in mouse models of Alzheimer's disease also appears to work via an elevation of glycolytic enzymes and enhance glucose metabolism. Here, I discuss these findings and the possible underlying mechanisms of how an increase in glucose uptake and glycolysis could be neuroprotective. Increased glycolytic production of ATP would help alleviate energy deficiency, and ATP's hydrotropic effect may enhance solubility and clearance of toxic aggregates prevalent in many neurodegenerative diseases. Furthermore, channeling of glucose into the Pentose Phosphate Pathway would increase the redox buffering capacity of the cell.  相似文献   

8.
Neuronal cell death underlies the majority of age-related human neurodegenerative disorders that culminate with salient and severe cognitive decline affecting patients' quality of life, identity and eventually leading to death. The identification of disease-causing genes in familial forms of neurodegenerative diseases enabled the development of genetic models closely replicating pathologies found in human central nervous system. These models dramatically precipitated our understanding of molecular events leading to neuronal death in many neurodegenerative disorders. Today's large range of cellular and animal models generate rapidly accumulating biochemical and neuropathological data on changes induced by mutated or dysfunctional proteins implicated in neuronal loss. Most of these models are complementary, although all have intrinsic limitations as well as specific advantages. Development of conditional transgenic mouse models in which a deleterious effect of a transgene can be regulated in a controlled way created new possibilities of addressing the basic mechanisms of neurodegeneration and provided a new angle for the development and testing of new therapeutic approaches.  相似文献   

9.
Saitohin is a gene unique to humans and their closest relatives, the function of which is not yet known. Saitohin contains a single polymorphism (Q7R), and its Q and R alleles belong to the H1 and H2 tau haplotype, respectively. The Saitohin Q allele confers susceptibility to several neurodegenerative diseases. To get a handle on Saitohin function, we used it as a bait in a yeast two-hybrid screen. By this assay and subsequent co-immunoprecipitation and glutathione S-transferase pull-down assays, we discovered and confirmed that Saitohin interacts with peroxiredoxin 6, a unique member of that family that is bifunctional and the levels of which increase in Pick disease. The strength of the interaction appeared to be allele-specific, giving the first distinction between the two forms of Saitohin.  相似文献   

10.
11.
Regular exercise induces a wide range of redox system-associated molecular adaptive responses to the nervous system. The intermittent induction of reactive oxygen species (ROS) during acute exercise sessions and the related upregulation of antioxidant/repair and housekeeping systems are associated with improved physiological function. Exercise-induced proliferation and differentiation of neuronal stem cells are ROS dependent processes. The increased production of brain derived neurotrophic factor (BDNF) and the regulation by regular exercise are dependent upon redox sensitive pathways. ROS are causative and associative factors of neurodegenerative diseases and regular exercise provides significant neuroprotective effects against Alzheimer's disease, Parkinson's disease, and hypoxia/reperfusion related disorders. Regular exercise regulates redox homeostasis in the brain with complex multi-level molecular pathways.  相似文献   

12.
Serum amyloid P component, a member of pentraxin serum protein family, has been suggested to contribute to the progression of neurodegeneration including Alzheimer's disease by binding to beta-amyloid fibrils leading to an increased stability of the deposits against proteolytic degradation and by inducing neuronal apoptosis. Here, we show that glycosaminoglycans inhibit both the serum amyloid P component-beta-amyloid interaction and the neurotoxic effect of serum amyloid P component. These effects correlate with the structure of glycosaminoglycans and show different structure-activity relationship in the case of the two different effects. While the efficacy of the inhibition on the serum amyloid P component-induced cell death increases with the uronic acid content, the inhibitory activity on the serum amyloid P component-beta-amyloid interaction decreases with the increasing uronic acid content of the glycosaminoglycans. The inhibitory effect of glycosaminoglycans on the interaction between the first component of the complement cascade (C1q) and beta-amyloid shows a similar structure-activity relationship as on the serum amyloid P component-beta-amyloid interaction. This suggests that glycosaminoglycans interfere with the binding site on beta-amyloid for serum amyloid P component and C1q. The functional consequence of this binding has been demonstrated by heparin which promotes the proteolysis of beta-amyloid in vitro in the presence of serum amyloid P component. Our results suggest that glycosaminoglycans might have therapeutical potential on the neurodegeneration reducing its progress.  相似文献   

13.
The phenotype of human prion diseases is influenced by the prion protein (PrP) genotype as determined by the methionine (M)/valine (V) polymorphism at codon 129, the scrapie PrP (PrPSc) type and the etiology. To gain further insight into the mechanisms of phenotype determination, we compared two-dimensional immunoblot profiles of detergent insoluble and proteinase K-resistant PrP species in a type of sporadic Creutzfeldt-Jakob disease (sCJDMM2), variant CJD (vCJD) and sporadic fatal insomnia (sFI). Full-length and truncated PrP forms present in the insoluble fractions were also separately analyzed. These three diseases were selected because they have the same M/M PrP genotype at codon 129 and the same type 2 PrPSc, but different etiologies, also sCJDMM2 and sFI are sporadic, whereas vCJD is acquired by infection. We observed minor differences in the PrP detergent-insoluble fractions between sCJDMM2 and vCJD, although both differ in the corresponding fractions from sFI. We detected more substantial heterogeneity between sCJDMM2 and vCJD in the two-dimensional blots of the proteinase K-resistant PrP fraction suggesting that different PrP species are selected for conversion to proteinase K-resistant PrP in sCJDMM2 and vCJD. These differences are mostly, but not exclusively, due to variations in the type of the N-linked glycans. We also show that the over-representation of the highly glycosylated forms distinctive of the proteinase K-resistant PrPSc of vCJD in one-dimensional blots is due to differences in both the amount and the natures of the glycans. Overall, these findings underline the complexity of phenotypic determination in human prion diseases.  相似文献   

14.
The mechanisms of intercellular spreading of amyloidogenic proteins involved in neurodegenerative diseases have yet to be fully elucidated. While secretion has been implicated in the transfer of many proteins, including prions and α-synuclein, tunneling nanotubes (TNTs) have also been demonstrated for prions and mutant Huntingtin. Here, we provide further evidence that Tau aggregates, which have been demonstrated to predominantly be transferred via secretion, can also be found in TNTs. Additionally, cells that have taken up Tau have increased TNT formation. Coupled with previous evidence that other amyloidogenic aggregates also induce TNT formation we propose that misfolded protein aggregates can, through a common mechanism, promote the formation of TNTs and thereby their own intercellular transfer, contributing to the propagation of pathology.  相似文献   

15.
In contrast to their parent molecule cholesterol, two of its side-chain oxidized metabolites are able to cross the blood–brain barrier. There is a concentration-driven flux of 24S-hydroxycholesterol (24S-OHC) from the brain into the circulation, which is of major importance for elimination of excess cholesterol from the brain. The opposite flux of 27-hydroxycholesterol (27-OHC) from the circulation into the brain may regulate a number of key enzymes within the brain. In vitro experiments suggest that the balance between the levels of these two molecules may be of importance for the generation of β-amyloid peptides. In primary cultures of rat hippocampal cells 27-OHC is able to suppress expression of the activity regulated cytoskeleton-associated protein (Arc), a protein important in memory consolidation which is reduced in patients with Alzheimer’s disease (AD). In the present work we explore the possibility that the flux of 27-OHC from the circulation into the brain represents the missing link between AD and hypercholesterolemia, and discuss the possibility that modification of this flux may be a therapeutic strategy. Lastly, we discuss the use of oxysterols as diagnostic markers in neurodegenerative disease.  相似文献   

16.
The effects of amyloid-beta (Aβ) protein on the expression of m1, m2 subunits of mAChR and on α7nAChR were analyzed in the cerebral cortex and in the hippocampus of rats following injections of Aβ (1–40) (BACHEM, 2 μg in 1 μL of PBS) into the left retroesplenial cortex (RSg) and injections of 1 μL of PBS into the right RSg. Sections were immunoreacted for the localization of α7, m1, m2, GABA, somatostatin and parvalbumin. Injections of Aβ resulted in loss of neurones expressing α7- and m1-like immunoreactivity (IR) in frontal, RSg cortices, hippocampus and subicular complex. A decrease of α7, m1- and m2-like-IR fibers and structures-like terminals was also seen in hippocampus, subicular and cerebral cortex. α7nAChR and m1, m2 subuntis of mAChRs were most commonly identified on GABAergic interneurones. These results point to an effect of Aβ on the synthesis of α7nAChR and mAChRs and suggest an important role of cholinoceptive interneurones in the dysfunction of hippocampus and cerebral cortex seen in AD.  相似文献   

17.
Oligodendrocyte is a highly specialized glial cell type in the vertebrate central nervous system, which guarantees the long-distance transmission of action potential by producing myelin sheath wrapping adjacent axons. Disrupted myelin and oligodendrocytes are hallmarks of some devastating neurological diseases, such as multiple sclerosis, although their contribution to neurodegeneration in a given disease is still controversial. However, accumulating evidence from clinical studies and genetic animal models implicates oligodendrocyte dysfunction as one of major events in the processes of initiation and progression of neurodegeneration. In this article, we will review recent progress in understanding non-traditional function of oligodendrocytes in neuronal support and protection independent of myelin sheath and its possible contribution to neurodegeneration. Oligodendrocytes play a pivotal role in neurodegenerative diseases among which special emphasis is given to multiple system atrophy and Alzheimer’s disease in this review.  相似文献   

18.
硫氧还蛋白与神经退行性病变   总被引:2,自引:0,他引:2  
神经退行性病变与胞内氧化还原失衡诱发的神经元损伤,死亡有密切关系,硫氧还原白参与维持胞内氧化还原平衡,在氧化应激中起重要的氧还调节作用,因此成为对抗神经退行性病变的重要蛋白之一。硫氧还蛋白可能通过激活某些有氧还调节功能的酶,清除自由基和调节细胞内分子通道等发挥对神经元的保护作用,对转基因动物的研究,进一步提示硫氧还蛋白在神经退行性病变的防治中可能发挥重要作用。  相似文献   

19.
Prions and neurodegenerative diseases   总被引:5,自引:0,他引:5  
The long-term, progressive decay of the central nervous system typifies prion diseases, a group of rare, transmissible maladies affecting humans, sheep, cattle and some other types of mammal. Little is known about the early molecular events in its pathogenesis but the diverse roles of PrP, the prion protein, in its destructive action have recently been re-emphasised.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号