首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.  相似文献   

2.
Signaling from G protein-coupled receptors to phospholipase C-beta (PLC-beta) is regulated by coordinate interactions among multiple intracellular signaling molecules. Phosphatidic acid (PA), a signaling phospholipid, binds to and stimulates PLC-beta(1) through a mechanism that requires the PLC-beta(1) C-terminal domain. PA also modulates Galpha(q) stimulation of PLC-beta(1). These data suggest that PA may have a key role in the regulation of PLC-beta(1) signaling in cells. The present studies addressed the structural requirements and the mechanism for PA regulation of PLC-beta(1). We used a combination of enzymatic assays, PA-binding assays, and circular dichroism spectroscopy to evaluate the interaction of PA with wild-type and mutant PLC-beta(1) proteins and with fragments of the Galpha(q) binding domain. The results identify a region that includes the alphaA helix and flexible loop of the Galpha(q)-binding domain as necessary for PA regulation. A mutant PLC-beta(1) with multiple alanine/glycine replacements for residues (944)LIKEHTTKYNEIQN(957) was markedly impaired in PA regulation. The high affinity and low affinity component of PA stimulation was reduced 70% and PA binding was reduced 45% in this mutant. Relative PLC stimulation by PA increased with PLC-beta(1) concentration in a manner suggesting cooperative binding to PA. Similar concentration dependence was observed in the PLC-beta(1) mutant. These data are consistent with a model for PA regulation of PLC-beta(1) that involves cooperative interactions, probably PLC homodimerization, that require the flexible loop region, as is consistent with the dimeric structure of the Galpha(q)-binding domain. PA regulation of PLC-beta(1) requires unique residues that are not required for Galpha(q) stimulation or GTPase-activating protein activity.  相似文献   

3.
Acetylcholine signaling through muscarinic type 2 receptors activates atrial G protein-gated inwardly rectifying K(+) (Kir3) channels via the betagamma subunits of G proteins (Gbetagamma). Different combinations of recombinant Gbetagamma subunits have been shown to activate Kir3 channels in a similar manner. In native systems, however, only Gbetagamma subunits associated with the pertussis toxin-sensitive Galpha(i/o) subunits signal to K(+) channels. Additionally, in vitro binding experiments supported the notion that the C terminus of Kir3 channels interacts preferentially with Galpha(i) over Galpha(q). In this study we confirmed in two heterologous expression systems a preference of Galpha(i) over Galpha(q) in the activation of K(+) currents. To identify determinants of Gbetagamma signaling specificity, we first exchanged domains of Galpha(i) and Galpha(q) subunits responsible for receptor coupling selectivity and swapped their receptor coupling partners. Our results established that the G proteins, regardless of the receptor type to which they coupled, conferred specificity to Kir3 activation. We next tested signaling through chimeras between the Galpha(i) and Galpha(q) subunits in which the N terminus, the helical, or the GTPase domains of the Galpha subunits were exchanged. Our results revealed that the helical domain of Galpha(i) (residues 63-175) in the background of Galpha(q) could support Kir3 activation, whereas the reverse chimera could not. Moreover, the helical domain of the Galpha(i) subunit conferred "Galpha(i)-like" binding of the Kir3 C terminus to the Galpha(q) subunits that contained it. These results implicate the helical domain of Galpha(i) proteins as a critical determinant of Gbetagamma signaling specificity.  相似文献   

4.
Characterization of the GRK2 binding site of Galphaq   总被引:1,自引:0,他引:1  
Heterotrimeric guanine nucleotide-binding proteins (G proteins) transmit signals from membrane bound G protein-coupled receptors (GPCRs) to intracellular effector proteins. The G(q) subfamily of Galpha subunits couples GPCR activation to the enzymatic activity of phospholipase C-beta (PLC-beta). Regulators of G protein signaling (RGS) proteins bind to activated Galpha subunits, including Galpha(q), and regulate Galpha signaling by acting as GTPase activating proteins (GAPs), increasing the rate of the intrinsic GTPase activity, or by acting as effector antagonists for Galpha subunits. GPCR kinases (GRKs) phosphorylate agonist-bound receptors in the first step of receptor desensitization. The amino termini of all GRKs contain an RGS homology (RH) domain, and binding of the GRK2 RH domain to Galpha(q) attenuates PLC-beta activity. The RH domain of GRK2 interacts with Galpha(q/11) through a novel Galpha binding surface termed the "C" site. Here, molecular modeling of the Galpha(q).GRK2 complex and site-directed mutagenesis of Galpha(q) were used to identify residues in Galpha(q) that interact with GRK2. The model identifies Pro(185) in Switch I of Galpha(q) as being at the crux of the interface, and mutation of this residue to lysine disrupts Galpha(q) binding to the GRK2-RH domain. Switch III also appears to play a role in GRK2 binding because the mutations Galpha(q)-V240A, Galpha(q)-D243A, both residues within Switch III, and Galpha(q)-Q152A, a residue that structurally supports Switch III, are defective in binding GRK2. Furthermore, GRK2-mediated inhibition of Galpha(q)-Q152A-R183C-stimulated inositol phosphate release is reduced in comparison to Galpha(q)-R183C. Interestingly, the model also predicts that residues in the helical domain of Galpha(q) interact with GRK2. In fact, the mutants Galpha(q)-K77A, Galpha(q)-L78D, Galpha(q)-Q81A, and Galpha(q)-R92A have reduced binding to the GRK2-RH domain. Finally, although the mutant Galpha(q)-T187K has greatly reduced binding to RGS2 and RGS4, it has little to no effect on binding to GRK2. Thus the RH domain A and C sites for Galpha(q) interaction rely on contacts with distinct regions and different Switch I residues in Galpha(q).  相似文献   

5.
17beta-estradiol and 1,25-dihydroxyvitamin D(3)()(calcitriol) rapidly increase (< 5 sec) the concentration of intracellular calcium by mobilizing Ca(2+) from the endoplasmic reticulum and forming inositol 1,4,5-trisphosphate (InsP(3)) and diacylglycerol. Calcitriol increases InsP(3) formation via activation of phospholipase C (PLC)-beta1 linked to a pertussis toxin (PTX)-insensitive G-protein, and estradiol via activation of PLC-beta2 linked to a PTX-sensitive G-protein. Since PLC are effectors of different subunits of various G-proteins, we looked for and identified several G-subunits (Galpha(q/11), Galphas, Galphai, Gbeta and Ggamma) in female rat osteoblasts using Western immunoblotting. The action of calcitriol on InsP(3) formation and Ca(2+) mobilization in Fura-2-loaded confluent osteoblasts involved Galpha(q/11). The membrane effects of estradiol involved Gbetagamma; subunits, and principally Gbeta subunits, but not alpha-subunits. These results may provide additional evidence for membrane receptors of steroid hormones. Since PLC-beta1 is the target effector of Galpha(q/11), whereas PLC-beta2 is only activated by betagamma subunits, this specificity may help to generate membrane receptor-specific responses in vivo.  相似文献   

6.
Cell signaling proteins may form functional complexes that are capable of rapid signal turnover. These contacts may be stabilized by either scaffolding proteins or multiple interactions between members of the complex. In this study, we have determined the affinities between a regulator of G protein signaling protein, RGS4, and three members of the G protein-phospholipase Cbeta (PLC-beta) signaling cascade which may allow for rapid deactivation of intracellular Ca(2+) release and activation of protein kinase C. Specifically, using fluorescence methods, we have determined the interaction energies between the RGS4, PLC-beta, G-betagamma, and both deactivated (GDP-bound) and activated (GTPgammaS-bound) Galpha(q). We find that RGS4 not only binds to activated Galpha(q), as predicted, but also to Gbetagamma and PLCbeta(1). These interactions occur through protein-protein contacts since the intrinsic membrane affinity of RGS4 was found to be very weak in the absence of the protein partner PLCbeta(1) or a lipid regulator, phosphatidylinositol-3,4,5 trisphosphate. Ternary complexes between Galpha(q), Gbetagamma and phospholipase Cbeta(1) will form, but only at relatively high protein concentrations. We propose that these interactions allow RGS4 to remain anchored to the signaling complex even in the quiescent state and allow rapid transfer to activated Galpha(q) to shut down the signal. Comparison of the relative affinities between these interacting proteins will ultimately allow us to determine whether certain complexes can form and where signals will be directed.  相似文献   

7.
Phospholipase C-epsilon (PLC-epsilon) is a recently identified PLC isoform activated by subunits of heterotrimeric G proteins (Galpha(12), Galpha(13), and Gbetagamma) as well as by the low molecular weight GTPases, Rho and Ras. To define the enzymatic activity and substrate specificity of PLC-epsilon as well as its potential direct activation by Rho family GTPases, a major fragment of PLC-epsilon encompassing the catalytic core (EF-hand repeats through the tandem Ras-associating domains; approximately 118 kDa) was purified to near homogeneity and assayed after reconstitution under various conditions. Similar to the enzymatic profiles of previously purified PLC-beta isozymes, the purified fragment of PLC-epsilon maximally hydrolyzed phosphatidylinositol 4-phosphate at a rate of approximately 10 mumol/mg of protein/min, exhibited phospholipase activity dependent on the concentration of free calcium, and favored phosphatidylinositol 4,5-bisphosphate as substrate relative to other phosphoinositides. Furthermore, in mixed detergent phospholipid micelles, RhoA stimulated the phospholipase activity of the PLC-epsilon fragment in both a concentration-dependent and guanosine 5'-O-(3-thiotriphosphate)-dependent manner. This activation was abolished by the deletion of a unique approximately 65 amino acid-insert within the catalytic core of PLC-epsilon. Although Rac1 activated purified PLC-beta2ina guanine nucleotide-dependent manner, Rac1 failed to promote guanine nucleotide-dependent activation of purified PLC-epsilon. These results indicate that PLC-epsilon is a direct downstream effector for RhoA and that RhoA-dependent activation of PLC-epsilon depends on a unique insert within the catalytic core of the phospholipase.  相似文献   

8.
Philip F  Scarlata S 《Biochemistry》2004,43(37):11691-11700
We have quantified the enhancement of membrane binding of activated and deactivated Galpha(s) and Galpha(q) subunits, Gbetagamma subunits, and phospholipase Cbeta(2) by lipid rafts and by the presence of membrane-associated protein partners. Membrane binding studies show that lipid rafts do not affect the intrinsic membrane affinity of Galpha(q)(GDP) and Galpha(s)(GDP), supporting the idea that these proteins partition evenly between the domains. Visualization of lipid rafts on monolayers by use of a probe that does not enter raft domains shows that neither activated nor deactivated Galpha(q)(GDP) subunits distribute evenly between the raft and nonraft domains, contrary to previous suggestions. Membrane binding of deactivated Galpha(q) and Galpha(s)(GDP) became weaker when Gbetagamma subunits were present, in contrast with the behavior predicted by thermodynamics. However, activated Galpha subunits and phospholipase Cbeta(2) were recruited to membrane surfaces by protein partners by predicted amounts. Our studies suggest that the anomalous behavior seen for deactivated Galpha subunits in the presence of Gbetagamma subunits may be due to conformational changes in the N-terminus and/or occlusion of a portion of its membrane interaction region by Gbetagamma. Even though membrane recruitment was clearly observed for one protein partner, the presence of a second partner of lower affinity did not further promote membrane binding. For these proteins, the formation of larger protein complexes with very high membrane affinities is unlikely.  相似文献   

9.
We examined the notion that sequestration of G protein subunits by binding to caveolin impedes G protein reassociation and leads to transient, G protein-specific desensitization of response in dispersed smooth muscle cells. Cholecystokinin octapeptide (CCK-8) and substance P (SP) were used to activate G(q/11), cyclopentyl adenosine (CPA) was used to activate G(i3), and acetylcholine (ACh) was used to activate both G(q/11) and G(i3) via m3 and m2 receptors, respectively. CCK-8 and SP increased only Galpha(q/11), and CPA increased only Galpha(i3) in caveolin immunoprecipitates; caveolin and other G proteins were not increased. ACh increased both Galpha(q/11) and Galpha(i3) in a time- and concentration-dependent fashion: only Galpha(q/11) was increased in the presence of an m2 antagonist, and only Galpha(i3) was increased in the presence of an m3 antagonist. To determine whether transient G protein binding to caveolin affected subsequent responses mediated by the same G protein, PLC-beta activity was measured in cells stimulated sequentially with two different agonists that activate either the same or a different G protein. After treatment of the cells with ACh and an m2 antagonist, the phospholipase C-beta (PLC-beta) response to CCK-8 and SP, but not CPA, was decreased; conversely, after treatment of the cells with ACh and an m3 antagonist, the PLC-beta response to CPA, but not CCK-8 or SP, was decreased. Similarly, after treatment with CCK-8 or SP, the PLC-beta response mediated by G(q/11) only was decreased, whereas after treatment with CPA, the PLC-beta response mediated by G(i3) only was decreased. A caveolin-binding Galpha(q/11) fragment blocked the binding of activated Galpha(q/11) but not Galpha(i3) to caveolin-3 and prevented desensitization of the PLC-beta response mediated only by other G(q/11)-coupled receptors. A caveolin-binding Galpha(i3) fragment had the reverse effect. Thus, transient binding of receptor-activated G protein subunits to caveolin impedes reassociation of the heterotrimeric species and leads to desensitization of response mediated by other receptors coupled to the same G protein.  相似文献   

10.
Heterotrimeric G protein G(q) stimulates the activity of p38 mitogen-activated protein kinase (MAPK) in mammalian cells. To investigate the signaling mechanism whereby alpha and betagamma subunits of G(q) activate p38 MAPK, we introduced kinase-deficient mutants of mitogen-activated protein kinase kinase 3 (MKK3), MKK4, and MKK6 into human embryonal kidney 293 cells. The activation of p38 MAPK by Galpha(q) and Gbetagamma was blocked by kinase-deficient MKK3 and MKK6 but not by kinase-deficient MKK4. In addition, Galpha(q) and Gbetagamma stimulated MKK3 and MKK6 activities. The MKK3 and MKK6 activations by Galpha(q), but not by Gbetagamma, were dependent on phospholipase C and c-Src. Galpha(q) stimulated MKK3 in a Rac- and Cdc42-dependent manner and MKK6 in a Rho-dependent manner. On the other hand, Gbetagamma activated MKK3 in a Rac- and Cdc42-dependent manner and MKK6 in a Rho-, Rac-, and Cdc42-dependent manner. Gbetagamma-induced MKK3 and MKK6 activations were dependent on a tyrosine kinase other than c-Src. These results suggest that Galpha(q) and Gbetagamma stimulate the activity of p38 MAPK by regulating MKK3 and MKK6 through parallel signaling pathways.  相似文献   

11.
Drin G  Douguet D  Scarlata S 《Biochemistry》2006,45(18):5712-5724
Phospholipase Cbeta (PLCbeta) enzymes are activated by Galpha q and Gbetagamma subunits and catalyze the hydrolysis of the minor membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Activation of PLCbeta2 by Gbetagamma subunits has been shown to be conferred through its N-terminal pleckstrin homology (PH) domain, although the underlying mechanism is unclear. Also unclear are observations that the extent of Gbetagamma activation differs on different membrane surfaces. In this study, we have identified a unique region of the PH domain of the PLCbeta2 domain (residues 71-88) which, when added to the enzyme as a peptide, causes enzyme activation similar to that with Gbetagamma subunits. This PH domain segment interacts strongly with membranes composed of lipid mixtures but not those containing lipids with electrically neutral zwitterionic headgroups. Also, addition of this segment perturbs interaction of the catalytic domain, but not the PH domain, with membrane surfaces. We monitored the orientation of the PH and catalytic domains of PLC by intermolecular fluorescence resonance energy transfer (FRET) using the Gbetagamma activatable mutant, PLCbeta2/delta1(C193S). We find an increase in the level of FRET with binding to membranes with mixed lipids but not to those containing only lipids with electrically neutral headgroups. These results suggest that enzymatic activation can be conferred through optimal association of the PHbeta71-88 region to specific membrane surfaces. These studies allow us to understand the basis of variations of Gbetagamma activation on different membrane surfaces.  相似文献   

12.
Receptors as well as some G protein subunits internalize after agonist stimulation. It is not clear whether Galpha(q) or Gbetagamma undergo such regulated translocation. Recent studies demonstrate that m3 muscarinic receptor activation in SK-N-SH neuroblastoma cells causes recruitment of tubulin to the plasma membrane. This subsequently transactivates Galpha(q) and activates phospholipase Cbeta1. Interaction of tubulin-GDP with Gbetagamma at the offset of phospholipase Cbeta1 signaling appears involved in translocation of tubulin and Gbetagamma to vesicle-like structures in the cytosol (Popova, J. S., and Rasenick, M. M. (2003) J. Biol. Chem. 278, 34299-34308). The relationship of this internalization to the clathrin-mediated endocytosis of the activated m3 muscarinic receptors or Galpha(q) involvement in this process has not been clarified. To test this, SK-N-SH cells were treated with carbachol, and localization of Galpha(q), Gbetagamma, tubulin, clathrin, and m3 receptors were analyzed by both cellular imaging and biochemical techniques. Upon agonist stimulation both tubulin and clathrin translocated to the plasma membrane and co-localized with receptors, Galpha(q) and Gbetagamma. Fifteen minutes later receptors, Gbetagamma and tubulin, but not Galpha(q), internalized with the clathrin-coated vesicles. Coimmunoprecipitation of m3 receptors with Gbetagamma, tubulin, and clathrin from the cytosol of carbachol-treated cells was readily observed. These data suggested that Gbetagamma subunits might organize the formation of a multiprotein complex linking m3 receptors to tubulin since they interacted with both proteins. Such protein assemblies might explain the dynamin-dependent but beta-arrestin-independent endocytosis of m3 muscarinic receptors since tubulin interaction with dynamin might guide or insert the complex into clathrin-coated pits. This novel mechanism of internalization might prove important for other beta-arrestin-independent endocytic pathways. It also suggests cross-regulation between G protein-mediated signaling and the dynamics of the microtubule cytoskeleton.  相似文献   

13.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

14.
RACK1 regulates specific functions of Gbetagamma   总被引:6,自引:0,他引:6  
We showed previously that Gbetagamma interacts with Receptor for Activated C Kinase 1 (RACK1), a protein that not only binds activated protein kinase C (PKC) but also serves as an adaptor/scaffold for many signaling pathways. Here we report that RACK1 does not interact with Galpha subunits or heterotrimeric G proteins but binds free Gbetagamma subunits released from activated heterotrimeric G proteins following the activation of their cognate receptors in vivo. The association with Gbetagamma promotes the translocation of RACK1 from the cytosol to the membrane. Moreover, binding of RACK1 to Gbetagamma results in inhibition of Gbetagamma-mediated activation of phospholipase C beta2 and adenylyl cyclase II. However, RACK1 has no effect on other functions of Gbetagamma, such as activation of the mitogen-activated protein kinase signaling pathway or chemotaxis of HEK293 cells via the chemokine receptor CXCR2. Similarly, RACK1 does not affect signal transduction through the Galpha subunits of G(i), G(s), or G(q). Collectively, these findings suggest a role of RACK1 in regulating specific functions of Gbetagamma.  相似文献   

15.
Activation of human phospholipase C-eta2 by Gbetagamma   总被引:1,自引:0,他引:1  
Zhou Y  Sondek J  Harden TK 《Biochemistry》2008,47(15):4410-4417
Phospholipase C-eta2 (PLC-eta2) was recently identified as a novel broadly expressed phosphoinositide-hydrolyzing isozyme [Zhou, Y., et al. (2005) Biochem. J. 391, 667-676; Nakahara, M., et al. (2005) J. Biol. Chem. 280, 29128-29134]. In this study, we investigated the direct regulation of PLC-eta2 by Gbetagamma subunits of heterotrimeric G proteins. Coexpression of PLC-eta2 with Gbeta 1gamma 2, as well as with certain other Gbetagamma dimers, in COS-7 cells resulted in increases in inositol phosphate accumulation. Gbeta 1gamma 2-dependent increases in phosphoinositide hydrolysis also were observed with a truncation mutant of PLC-eta2 that lacks the long alternatively spliced carboxy-terminal domain of the isozyme. To begin to define the enzymatic properties of PLC-eta2 and its potential direct activation by Gbetagamma, a construct of PLC-eta2 encompassing the canonical domains conserved in all PLCs (PH domain through C2 domain) was purified to homogeneity after expression from a baculovirus in insect cells. Enzyme activity of purified PLC-eta2 was quantified after reconstitution with PtdIns(4,5)P 2-containing phospholipid vesicles, and values for K m (14.4 microM) and V max [12.6 micromol min (-1) (mg of protein) (-1)] were similar to activities previously observed with purified PLC-beta or PLC-epsilon isozymes. Moreover, purified Gbeta 1gamma 2 stimulated the activity of purified PLC-eta2 in a concentration-dependent manner similar to that observed with purified PLC-beta2. Activation was dependent on the presence of free Gbeta 1gamma 2 since its sequestration in the presence of Galpha i1 or GRK2-ct reversed Gbeta 1gamma 2-promoted activation. The PH domain of PLC-eta2 is not required for Gbeta 1gamma 2-mediated regulation since a purified fragment encompassing the EF-hand through C2 domains but lacking the PH domain nonetheless was activated by Gbeta 1gamma 2. Taken together, these studies illustrate that PLC-eta2 is a direct downstream effector of Gbetagamma and, therefore, of receptor-activated heterotrimeric G proteins.  相似文献   

16.
Nagao M  Kaziro Y  Itoh H 《FEBS letters》2000,472(2-3):297-301
Thrombin has been shown to inhibit skeletal muscle differentiation. However, the mechanisms by which thrombin represses myogenesis remain unknown. Since the thrombin receptor couples to G(i), G(q/11) and G(12), we examined which subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (Galpha(i), Galpha(q/11), Galpha(12) or Gbetagamma) participate in the thrombin-induced inhibition of C2C12 myoblast differentiation. Galpha(i2) and Galpha(11) had no inhibitory effect on the myogenic differentiation. Galpha(12) prevented only myoblast fusion, whereas Gbetagamma inhibited both the induction of skeletal muscle-specific markers and the myotube formation. In addition, the thrombin-induced reduction of creatine kinase activity was blocked by the C-terminal peptide of beta-adrenergic receptor kinase, which is known to sequester free Gbetagamma. These results suggest that the thrombin-induced inhibition of muscle differentiation is mainly mediated by Gbetagamma.  相似文献   

17.
Our earlier studies of rat brain phospholipase D1 (rPLD1) showed that the enzyme could be activated in cells by alpha subunits of the heterotrimeric G proteins G(13) and G(q). Recently, we showed that rPLD1 is modified by Ser/Thr phosphorylation and palmitoylation. In this study, we first investigated the roles of these post-translational modifications on the activation of rPLD1 by constitutively active Galpha(13)Q226L and Galpha(q)Q209L. Mutations of Cys(240) and Cys(241) of rPLD1, which abolish both post-translational modifications, did not affect the ability of either Galpha(13)Q226L or Galpha(q)Q209L to activate rPLD1. However, the RhoA-insensitive mutants, rPLD1(K946A,K962A) and rPLD1(K962Q), were not activated by Galpha(13)Q226L, although these mutant enzymes responded to phorbol ester and Galpha(q)Q209L. On the contrary, the PKC-insensitive mutant rPLD1(DeltaN168), which lacks the first 168 amino acids of rPLD1, responded to Galpha(13)Q226L but not to Galpha(q)Q209L. In addition, we found that rPLD2 was strongly activated by Galpha(q)Q209L and phorbol ester. However, surprisingly, the enzymatic activity of rPLD2 was suppressed by Galpha(13)Q226L and constitutively active V14RhoA in COS-7 cells. Abolition of the post-translational modifications of rPLD2 did not alter the effects of Galpha(q)Q209L or Galpha(13)Q226L. The suppressive effect of Galpha(13)Q226L on rPLD2 was reversed by dominant negative N19RhoA and the C3 exoenzyme of Clostridium botulinum, further supporting a role for RhoA. In summary, Galpha(13) activation of rPLD1 in COS-7 cells is mediated by Rho, while Galpha(q) activation requires PKC. rPLD2 is activated by Galpha(q), but is inhibited by Galpha(13). Neither Ser/Thr phosphorylation nor palmitoylation is required for these effects.  相似文献   

18.
The conceptual segregation of G protein-stimulated cell signaling responses into those mediated by heterotrimeric G proteins versus those promoted by small GTPases of the Ras superfamily is no longer vogue. PLC-epsilon, an isozyme of the phospholipase C (PLC) family, has been identified recently and dramatically extends our understanding of the crosstalk that occurs between heterotrimeric and small monomeric GTPases. Like the widely studied PLC-beta isozymes, PLC-epsilon is activated by Gbetagamma released upon activation of heterotrimeric G proteins. However, PLC-epsilon markedly differs from the PLC-beta isozymes in its capacity for activation by Galpha(12/13) - but not Galpha(q) -coupled receptors. PLC-epsilon contains two Ras-associating domains located near the C terminus, and H-Ras regulates PLC-epsilon as a downstream effector. Rho also activates PLC-epsilon, but in a mechanism independent of the C-terminal Ras-associating domains. Therefore, Ca(2+) mobilization and activation of protein kinase C are signaling responses associated with activation of both H-Ras and Rho. A guanine nucleotide exchange domain conserved in the N terminus of PLC-epsilon potentially confers a capacity for activators of this isozyme to cast signals into additional signaling pathways mediated by GTPases of the Ras superfamily. Thus, PLC-epsilon is a multifunctional nexus protein that senses and mediates crosstalk between heterotrimeric and small GTPase signaling pathways.  相似文献   

19.
To determine the intracellular signaling mechanism of the 5-HT(2C) receptor endogenously expressed in choroid plexus epithelial cells, we implemented a strategy of targeted disruption of protein-protein interactions. This strategy entails the delivery of conjugated membrane-permeable peptides that disrupt domain interaction at specific steps in the signaling cascade. As proof of concept, two peptides targeted against receptor-G protein interaction domains were examined. Only G(q)CT, which targets the receptor-G(q) protein interacting domain, disrupted 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. G(s)CT, targeting the receptor-G(s) protein, disrupted beta2 adrenergic receptor-mediated activation of cAMP but not 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. The peptide MPS-PLCbeta1M, mimicking the domain of phospholipase Cbeta1 (PLCbeta1) interacting with active Galpha(q), also blocked 5-HT(2C) receptor activation. In contrast, peptides PLCbeta2M and Phos that bind to and sequester free Gbetagamma subunits were ineffective at blocking 5-HT(2C) receptor-mediated phosphoinositol turnover. However, both peptides disrupted Gbetagamma-mediated alpha(2A) adrenergic receptor activation of mitogen-activated protein kinase. These results provide the first direct demonstration that active Galpha(q) subunits mediate endogenous 5-HT(2C) receptor activation of PLCbeta and that Gbetagamma subunits released from Galpha(q) heterotrimeric proteins are not involved. Comparable results were obtained with metabotropic glutamate receptor 5 expressed in astrocytes. Thus, conjugated, membrane-permeable peptides are effective tools for the dissection of intracellular signals.  相似文献   

20.
p21-activated protein kinase (PAK)-1 phosphorylated Galpha(z), a member of the Galpha(i) family that is found in the brain, platelets, and adrenal medulla. Phosphorylation approached 1 mol of phosphate/mol of Galpha(z) in vitro. In transfected cells, Galpha(z) was phosphorylated both by wild-type PAK1 when stimulated by the GTP-binding protein Rac1 and by constitutively active PAK1 mutants. In vitro, phosphorylation occurred only at Ser(16), one of two Ser residues that are the major substrate sites for protein kinase C (PKC). PAK1 did not phosphorylate other Galpha subunits (i1, i2, i3, o, s, or q). PAK1-phosphorylated Galpha(z) was resistant both to RGSZ1, a G(z)-selective GTPase-activating protein (GAP), and to RGS4, a relatively nonselective GAP for the G(i) and G(q) families of G proteins. Phosphorylation of Ser(27) by PKC did not alter sensitivity to either GAP. The previously described inhibition of G(z) GAPs by PKC is therefore mediated by phosphorylation of Ser(16). Phosphorylation of either Ser(16) by PAK1 or Ser(27) by PKC decreased the affinity of Galpha(z) for Gbetagamma; phosphorylation of both residues by PKC caused no further effect. PAK1 thus regulates Galpha(z) function by attenuating the inhibitory effects of both GAPs and Gbetagamma. In this context, the kinase activity of PAK1 toward several protein substrates was directly inhibited by Gbetagamma, suggesting that PAK1 acts as a Gbetagamma-regulated effector protein. This inhibition of mammalian PAK1 by Gbetagamma contrasts with the stimulation of the PAK homolog Ste20p in Saccharomyces cerevisiae by the Gbetagamma homolog Ste4p/Ste18p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号