首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the companion report we used primary cultures of adult rat hepatocytes to demonstrate that glucocorticoids comprise a "class" of compounds that stimulate de novo synthesis of a form of cytochrome P-450 (P450PCN) indistinguishable from that induced by the nonhormonal steroid pregnenolone 16 alpha-carbonitrile (PCN). Because induction of P450PCN is stereospecific for glucocorticoids and is dependent on the concentration of and the length of exposure to steroids it seemed possible that P450PCN represented another of the many genes whose expression is coordinately regulated by glucocorticoids bound to their specific cytoplasmic receptor and translocated into the nucleus. However, in cultured hepatocytes treated with glucocorticoids, synthesis of P450PCN failed to parallel synthesis of a typical glucocorticoid-responsive liver function, tyrosine aminotransferase, in the time course of induction, in the concentrations of glucocorticoids required for half-maximal induction, and in the order of effective steroids ranked by potency. Indeed, two moderately potent inducers of P450PCN either failed to induce tyrosine aminotransferase (spironolactone) or actually antagonized induction of tyrosine aminotransferase synthesis by glucocorticoids (PCN). Moreover, in the same cultures in which glucocorticoid induction of tyrosine aminotransferase was blocked by the presence of PCN or other previously identified antiglucocorticoids, synthesis of P450PCN was actually enhanced. We conclude that synthesis of P450PCN is a specific glucocorticoid-responsive liver function evoked by a novel mechanism readily distinguishable from the classic glucocorticoid receptor pathway.  相似文献   

2.
The interaction of cimetidine with liver microsomes has been examined by spectral and equilibrium partition studies. First, difference spectroscopy has been used to evaluate the proportion of cytochrome P-450 in rat liver microsomes that exhibits an affinity for cimetidine in the pharmacologically relevant, low micromolar range of drug concentration. The value of 0.45 so obtained has confirmed that a substantial proportion of rat liver cytochrome P-450 has a high binding affinity for this drug. Second, a study of the binding of cimetidine to human liver microsomes by difference spectroscopy and partition equilibrium has detected a similar interaction, thus providing direct support for the postulate that the clinically observed impairment of oxidative drug metabolism may be due in part to inhibition of cytochrome P-450 monooxygenase by cimetidine. Hepatic microsomes from cimetidine-pretreated rats have been shown to exhibit elevated cytochrome P-450 specific content but a decreased proportion of sites with high affinity for the drug; this finding has been shown not to be the consequence of cimetidine-mediated, time-dependent, irreversible monooxygenase inhibition. Although cimetidine pretreatment caused enhanced specific activity of 7-ethoxyresorufin O-dealkylation, the specific activities for O-dealkylation of 7-ethoxycoumarin and 4-nitroanisole were decreased, as were those for the N-dealkylation of morphine, ethylmorphine, aminopyrine, and dimethylnitrosamine. Since cimetidine pretreatment was shown to cause no change in the Michaelis constants for oxidation of morphine or 7-ethoxyresorufin, it is argued that these results provide strong presumptive evidence for changes in the relative abundance of isoenzymes catalyzing these various oxidations. Thus, a dual role of cimetidine, acting both as inhibitor and inducer of the cytochrome P-450 system, is proposed to account for the impaired oxidative metabolism of some drugs that occurs during coadministration with this H2-receptor antagonist.  相似文献   

3.
The role of haem synthesis during induction of hepatic cytochrome P-450 haemoproteins was studied in chick embryo in ovo and in chick embryos hepatocytes cultured under chemically defined conditions. 1. Phenobarbitone caused a prompt increase in the activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, and in the concentration of cytochrome P-450. This induction response occurred without measurable initial destruction of the haem moiety of cytochrome P-450. 2. When intracellular haem availability was enhanced by exogenous haem or 5-aminolaevulinate, phenobarbitone-medicated induction of cytochrome P-450 was not affected in spite of the well known repression of 5-aminolaevulinate synthase by haem. These data are consistent with the concept that haem does not regulate the synthesis of cytochrome P-450 haemoproteins. 3. Acetate inhibited haem biosynthesis at the level of 5-aminolaevulinate formation. When intracellular haem availability was diminished by treatment with acetate, phenobarbitone-medicated induction was decreased. 4. This inhibitory effect of acetate on cytochrome P-450 induction was reversed by exogenous haem or its precursor 5-aminolaevulinate. These data suggest that inhibition of haem biosynthesis does not decrease synthesis of apo-cytochrome P-450. Moreover, they indicate that exogenous haem can be incorporated into newly formed aop-cytochrome P-450.  相似文献   

4.
The administration of organotin compounds to rats in single doses causes a significant and prolonged induction of haem oxygenase and a sustained decrease in haemoprotein content in the liver. The extent of induction of hepatic haem oxygenase varied between 3 and 5-fold at 72h after a single injection of water-insoluble organotins of differing structure. The alterations in haem metabolism produced by tricyclohexyltin hydroxide were studied in detail. The effects were dose-dependent, with doses as low as 3.75 mg/kg body wt. resulting in significant induction of haem oxygenase and a decrease in cytochrome P-450 and cytochrome b5 contents at 72h in the liver. The effects with time of a single dose of tricyclohexyltin on various parameters of liver haem metabolism were also examined. The organotin produced a substantial and very prolonged induction of haem oxygenase accompanied by a steady decline in cytochrome P-450 content for periods up to 8 days. The long duration of action of these organotins with respect to induction of haem oxygenase and depletion of cellular haemoprotein content provides a highly sensitive metabolic system with which to define further the toxic potential of organometals as well as to study the adaptive responses in liver to long-term perturbations of haem metabolism by foreign chemicals.  相似文献   

5.
6.
Incubation of valproic acid with rat liver microsomes led to the formation of 3-, 4- and 5-hydroxy-valproic acid. The latter two metabolites, which have been characterized previously from in vivo studies, may be regarded as products of fatty acid ω-1 and ω hydroxylation, respectively. 3-Hydroxy-valproic acid, however, had been thought to derive from the β-oxidation pathway in mitochondria. Conversion of valproic acid to all three metabolites in microsomes required NADPH (NADH was less effective), utilized molecular oxygen, was suppressed by inhibitors of cytochrome P-450 and was stimulated (notably at C-3 and C-4) by phenobarbital pretreatment of the rats. It is concluded that rat liver microsomal cytochrome P-450 catalyzes ω-2 hydroxylation of valproic acid, a reaction not detected previously with fatty acids in mammalian systems, and that the product, 3-hydroxyvalproic acid, should not be used to assess in vivo metabolism of valproate via the β-oxidation pathway.  相似文献   

7.
Mephenytoin, diphenylhydantoin, pheneturide, and phenobarbital produced a concentration-dependent inhibition in the binding of hexobarbital to cytochrome P-450 at the type 1 site, while sulthiame slightly potentiated, and ethosuximide did not affect the binding characteristic of hexobarbital. Diphenylhydantoin, phenobarbital, and pheneturide have previously been shown to enhance the urinary excretion of D-glucaric acid (DGA), while sulthiame inhibited the potentiation of DGA excretion caused by these drugs, and ethosuximide produced no change. The results suggest a close relationship between the ability of these drugs to induce hepatic microsomal drug-metabolizing enzyme systems (as indicated by enhancement of DGA excretion) and binding behaviour at the type 1 site.  相似文献   

8.
D Kupfer 《Life sciences》1974,15(4):657-670
The spectral changes associated with the addition of prostaglandins (PGs) to hepatic microsomes from guinea pigs and rats were examined. PGA1, PGA2, PGE1, PGE2, PGF and PGF when added to guinea pig liver microsomes exhibited type I spectra. The binding affinities as determined from spectral dissociation constants (Ks) were highest with PGA1 and PGA2. With liver microsomes from control or 3-methyl-cholanthrene (MC)-treated rats, PGs did not yield type I spectra; however, in this case a weak spectrum, designated here as type “II” was at times observed, With microsomes from phenobarbital (Pb)-treated rats only PGA1 and PGA2 yielded type I spectra; again in absence of type I spectrum, a weak type “II” was occasionally observed. The addition of PGA1 and PGA2 to liver microsomes from Pb-treated rats inhibited the microcomal mediated hydroxylation of hexobarbital. The inhibition by PGA1 was competitive; the Ki = 8.2 × 10?4 M was found to be similar in magnitude to the Ks = 7.3 × 10?4 M of PGA1 observed with rat liver microsomes. These observations suggested that PGs particularly of the A series interact with the hepatic microsomal cytochrome P-450 monooxygenase system.  相似文献   

9.
Prior administration of aminotriazole (3-amino-1,2,4-triazole) or pyrazole to rats resulted in a significant prevention of the CCl4-induced decrease in the liver microsomal P-450 content. In A/J mice the CCl4 activation and P-450 destruction occurred in absolute absence of lipid peroxidation as determined by uv absorption. The data suggest that P-450 destruction is mainly mediated by direct attack of CCl4 metabolites rather than by CCl4-induced lipid peroxidation.  相似文献   

10.
11.
T Shimizu  T Nozawa  M Hatano  Y Imai  R Sato 《Biochemistry》1975,14(19):4172-4178
Magnetic circular dichroism (MCD) spectra have been measured for cytochrome P-450 (P-450) purified from phenobarbital-induced rabbit liver microsomes. The temperature dependence of some of the MCD spectra has also been determined. The MCD spectrum of oxidized P-450 seems to suggest that it is in a state intermediate between the ferric low-spin states. Model experiments suggest that this anomaly arises from the coordination of a thiolate anion to the heme. Reduced P-450 shows a very peculiar MCD spectrum; the spectrum as well as its temperature dependence suggest that the heme in reduced P-450 is a "mixture" in terms of redox and/or spin states. The MCD spectrum of the CO complex of reduced P-450 exhibits an apparent Faraday A term around 450 nm which consists of about 50% C term and 50% the other terms, indicating that it is not in a purely ferrous low-spin state. The CO complex of reduced cytochrome P-420 (P-420), on the other hand, shows an MCD spectrum characteristic of a ferrous low-spin heme. It is suggested from model experiments that the thiolate anion coordinates to the heme trans to CO in the P-450-CO complex. The Soret region of the MCD spectrum of the EtNC complex of reduced P-450 is characterized by two apparent A terms around 430 and 455 nm, whereas that of the corresponding complex of P-420 has only one apparent A term around 434 nm.  相似文献   

12.
The metabolism of benzanthrone, a commonly used dy intermediate, by rat hepatic microsomes was investigated using thin layer chromatography (TLC) analysis. Incubation of benzanthrone with hepatic microsomes in the presence of NADPH generating system produced at least seven fluorescent metabolites on TLC plates. TLC spots numbered II, III, IV, V and VI were the major metabolites obtained from hepatic microsomes with the Rf values of 0.53, 0.45, 0.38, 0.33 and 0.26, respectively. Metabolites VII and VIII were faint bands with Rf values of 0.08 and 0.04, respectively. Preincubation of hepatic microsomes with either 1-benzyl-imidazole (10(-4)M) or SKF-525 A (10(-4)M) or metyrapone (10(-3)M) or flushing with carbon monoxide substantially inhibited the benzanthrone metabolism. alpha-Naphtho-flavone (10(-4)M) did not cause any change in hepatic microsomal metabolism of benzanthrone. Oral administration of benzanthrone to animals yielded at least six urinary metabolites. TLC spots numbered II, III, IV, V and VI in the urine were same as those of hepatic microsomal metabolites. However, one of the urinary metabolite numbered IX which stays at the origin of TLC plate with the Rf value of 0.05 may be a conjugate. Our results suggest that benzanthrone acts as a substrate for hepatic heme protein, cytochrome P-450 and that some of the metabolites are excreted in urine.  相似文献   

13.
14.
Nitric oxide synthase is a cytochrome P-450 type hemoprotein.   总被引:35,自引:0,他引:35  
K A White  M A Marletta 《Biochemistry》1992,31(29):6627-6631
Nitric oxide has emerged as an important mammalian metabolic intermediate involved in critical physiological functions such as vasodilation, neuronal transmission, and cytostasis. Nitric oxide synthase (NOS) catalyzes the five-electron oxidation of L-arginine to citrulline and nitric oxide. Cosubstrates for the reaction include molecular oxygen and NADPH. In addition, there is a requirement for tetrahydrobiopterin. NOS also contains the coenzymes FAD and FMN and demonstrates significant amino acid sequence homology to NADPH-cytochrome P-450 reductase. Herein we report the identification of the inducible macrophage NOS as a cytochrome P-450 type hemoprotein. The pyridine hemochrome assay showed that the NOS contained a bound protoporphyrin IX heme. The reduced carbon monoxide binding spectrum shows an absorption maximum at 447 nm indicative of a cytochrome P-450 hemoprotein. A mixture of carbon monoxide and oxygen (80%/20%) potently inhibited the reaction (73-79%), showing that the heme functions directly in the oxidative conversion of L-arginine to nitric oxide and citrulline. Additionally, partially purified NOS from rat cerebellum was inhibited by CO, suggesting that this isoform may also contain a P-450-type heme. NOS is the first example of a soluble cytochrome P-450 in eukaryotes. In addition, the presence of FAD and FMN indicates that this is the first catalytically self-sufficient mammalian P-450 enzyme, containing both a reductase and a heme domain on the same polypeptide.  相似文献   

15.
Phenobarbital, 3-methylcholanthrene, acetone and pyrazole were used as inducers of cytochrome P450 and the NADPH-dependent oxidase activity (O-2 production) of pulmonary and hepatic microsomes was determined. Oxidase activity of microsomes from 3-methylcholanthrene-treated rats was significantly decreased as compared to that of controls when expressed on the basis of cytochrome P450 content (30% decrease for liver, 60% decrease for lung). The oxidase activity of liver microsomes from pyrazole-treated rats showed a significant increase, whereas phenobarbital treated microsomes had average superoxide-generating activity. The contribution of cytochromes CYP 1A, CYP 2B and CYP 2E1 to superoxide-generating activity was investigated using monoclonal antibodies. Monoclonal antibody 1-91-3 against CYP 2E1 inhibited superoxide generation by 58% in liver microsomes from pyrazole-treated rats. Monoclonal antibodies 1-7-1 and 2-66-3 against CYP 1A and CYP2B, respectively, had no effect on superoxide generation. These results indicate that different cytochrome P450 isoforms are mainly responsible for differential superoxide generating activities of microsomes and complement the reconstitution study of Morehouse and Aust. Furthermore, our study indicates that CYP 1A1, induced by 3-MC, demonstrates an unusually low oxidase activity.  相似文献   

16.
17.
  • 1.1. To characterize an enzyme which metabolizes retinal in liver microsomes, several properties of the enzymatic reaction from retinal to retinoic acid were investigated using rabbit liver microsomes.
  • 2.2. The maximum pH of the reaction in the liver microsomes was 7.6.
  • 3.3. The Km and Vmax values for all-trans, 9-cis and 13-cis-retinals were determined.
  • 4.4. The reaction proceeded in the presence of NADPH and molecular oxygen.
  • 5.5. The incorporation of one atom of molecular oxygen into retinal was confirmed by using oxygen-18, showing that the reaction comprised monooxygenation, not dehydrogenation.
  • 6.6. The monooxygenase activity was inhibited by carbon monoxide, phenylisocyanide and antiNADPH-cytochrome P-450 reductase IgG, but not by anti-cytochrome b5 IgG.
  • 7.7. The enzymatic activity inhibited by carbon monoxide was photoreversibly restored by light of a wavelength of around 450 nm.
  • 8.8. The retinal-induced spectra of liver microsomes with three isomeric retinals were type I spectra.
  • 9.9. The microsomal monooxygenase activity induced by phenobarbital or ethanol were more effective than that by 3-methylcholanthrene, clotrimazole or β-naphthoflavone.
  • 10.10. These results showed that the monooxygenase reaction from retinal to retinoic acid in liver microsomes is catalyzed by a cytochrome P-450-linked monooxygenase system.
  相似文献   

18.
Studies conducted by several groups have established that porphyrogenic agents which caused elevations in chick-embryo liver delta-aminolaevulinate (ALA) synthase activity also increased the concentrations of the enzyme's RNA, and that haemin inhibited these elevations. We have determined in this study, using immune-blot analyses, that administration in ovo of allylisopropylacetamide (AIA) in combination with diethyl 1,4-dihydro-2,4,6-trimethyl,3,5-pyridinedicarboxylate (DDC) increased the mass of ALA synthase in intestine and kidney of chick embryos. Furthermore, the molecular mass of the subunit of the enzyme in those tissues appeared identical with that of liver ALA synthase. Using a synthetic oligonucleotide complementary to ALA synthase mRNA, we determined by solution hybridization and Northern-blot analyses that AIA and DDC also increased the concentrations of ALA synthase mRNA in intestine and kidney and that testosterone elevated the concentration of the RNA in kidney. In analyses of RNA obtained from chick-embryo liver, intestine, kidney, heart, brain and lung, the probe bound primarily in each case to a single 2.3 kb RNA. Finally, the haem precursors ALA and FeCl3, when injected together into the fluid surrounding embryos, inhibited both the elevations in ALA synthase mass and RNA concentration brought about by porphyrogenic agents in liver, kidney and intestine. Thus the results indicated that: (1) certain porphyrogenic agents increased ALA synthase mass and RNA in chick-embryo intestine and kidney, in addition to liver; (2) ALA and FeCl3 inhibited the elevations; and (3) the sizes of ALA synthase's subunit as well as the enzyme's mRNA appeared identical, in each case, in all tissues examined.  相似文献   

19.
The complete coding sequence for P-450 PBc2 was inserted into a T7-phage promoter system, and a capped cRNA was generated using T7 RNA polymerase. The P-450 PBc2 cRNA was translated in a rabbit reticulocyte lysate. The in vitro translation product was indirectly immunoprecipitated by the monoclonal antibodies 2F5 and 3C3 that recognize P-450 K. SDS-polyacrylamide gel electrophoresis revealed that the translated protein product exhibits the same relative electrophoretic mobility as P-450 K. The N-terminal amino acid sequence was determined to be MDLVVVLGL-LS-LLLLSL- for P-450 K immunopurified from rabbit kidney using the monoclonal antibody 2F5. This sequence agrees with the predicted amino acid sequence derived from the P-450 PBc2 cDNA. These results indicate that P-450 K or a protein closely related to P-450 K is encoded by the plasmid pP-450 PBc2.  相似文献   

20.
Cytochrome P-450j has been purified to electrophoretic homogeneity from isoniazid-treated adult male rats; and this enzyme appears to be a major protein induced in hepatic microsomes after administration of isoniazid, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hemoprotein has a minimum molecular weight of approximately 51,500, and the ferrous-carbonyl complex of cytochrome P-450j has a Soret maximum at 451-452 nm. The oxidized heme iron appears to be predominately in the high spin state as deduced from the Soret maximum at 395 nm. Ethylisocyanide binds to ferrous cytochrome P-450j to yield spectral maxima at approximately 458 and 430 nm with a resultant 458/430 ratio of 0.7 at pH 7.4. Cytochrome P-450j has no measurable catalytic activity for the metabolism of benzo[a]pyrene (3- and 9-hydroxylation), hexobarbital, testosterone, and 5 alpha-androstane-3 alpha,17 beta-diol-3,17-disulfate. Low, but detectable, catalytic activity is obtained for the metabolism of 7-ethoxycoumarin, benzphetamine, p-nitroanisole, zoxazolamine, and 2-hydroxylation of 17 beta-estradiol. In contrast, cytochrome P-450j effectively catalyzes p-hydroxylation of aniline with a turnover of 12.7 nmol/min/nmol cytochrome P-450j. Hydroxyl radical scavengers, Fe-EDTA, superoxide dismutase, and catalase have no effect on aniline p-hydroxylation catalyzed by cytochrome P-450j. Cytochrome P-450j is distinct from nine other rat hepatic microsomal cytochromes P-450 (P-450a-P-450i) previously purified in this laboratory, as well as different isozymes described by other investigators, based on several parameters including minimum molecular weight, spectral properties, and catalytic activity. In Ouchterlony double diffusion plates, antibodies against cytochromes P-450a-P-450f show no cross-reaction with cytochrome P-450j. Structural differences among cytochromes P-450a-P-450j are apparent from the NH2-terminal sequence of cytochrome P-450j, as well as the electrophoretic profiles of proteolytic digests of the hemoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号