首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ongoing sphingolipid synthesis is specifically required in vivo for the endoplasmic reticulum (ER) to Golgi transport of glycosylphosphatidylinositol (GPI)-anchored proteins. However, the sphingolipid intermediates that are required for transport nor their role(s) have been identified. Using stereoisomers of dihydrosphingosine, together with specific inhibitors and a mutant defective for sphingolipid synthesis, we now show that ceramides and/or inositol sphingolipids are indispensable for GPI-anchored protein transport. Furthermore, in the absence of sphingolipid synthesis, a significant fraction of GPI-anchored proteins is no longer associated tightly with the ER membrane. The loose membrane association is neither because of the lack of a GPI-anchor nor because of prolonged ER retention of GPI-anchored proteins. These results indicate that ceramides and/or inositol sphingolipids are required to stabilize the association of GPI-anchored proteins with membranes. They could act either by direct involvement as membrane components or as substrates for the remodeling of GPI lipid moieties.  相似文献   

2.
Two rounds of chromosome segregation after only a single round of DNA replication enable the production of haploid gametes from diploid precursors during meiosis. To identify genes involved in meiotic chromosome segregation, we developed an efficient strategy to knock out genes in the fission yeast on a large scale. We used this technique to delete 180 functionally uncharacterized genes whose expression is upregulated during meiosis. Deletion of two genes, sgo1 and mde2, caused massive chromosome missegregation. sgo1 is required for retention of centromeric sister-chromatid cohesion after anaphase I. We show here that mde2 is required for formation of the double-strand breaks necessary for meiotic recombination.  相似文献   

3.
《The Journal of cell biology》1989,109(6):2641-2652
Genes that function in translocation of secretory protein precursors into the ER have been identified by a genetic selection for mutant yeast cells that fail to translocate a signal peptide-cytosolic enzyme hybrid protein. The new mutants, sec62 and sec63, are thermosensitive for growth and accumulate a variety of soluble secretory and vacuolar precursors whose electrophoretic mobilities coincide with those of the corresponding in vitro translated polypeptides. Proteolytic sensitivity of precursor molecules in extracts of mutant cells confirms that polypeptide translocation is blocked. Some form of interaction among the SEC61 (Deshaies, R. J., and R. Schekman. 1987. J. Cell Biol. 105:633-645), SEC62 and SEC63 gene products is suggested by the observation that haploid cells containing any pair of the mutations are inviable at 24 degrees C and show a marked enhancement of the translocation defect. The translocation defects of two mutants (sec62 and sec63) have been reproduced in vitro. sec63 microsomes display low and thermolabile translocation activity for prepro-alpha-factor (pp alpha F) synthesized with a cytosol fraction from wild type yeast. These gene products may constitute part of the polypeptide recognition or translocation apparatus of the ER membrane. Pulse-chase analysis of the translocation-defective mutants demonstrates that insertion of pp alpha F into the ER can proceed posttranslationally.  相似文献   

4.
In yeast, certain resident trans-Golgi network (TGN) proteins achieve steady-state localization by cycling through late endosomes. Here, we show that chitin synthase III (Chs3p), an enzyme involved in the assembly of the cell wall at the mother-bud junction, populates an intracellular reservoir that is maintained by a cycle of transport between the TGN and early endosomes. Traffic of Chs3p from the TGN/early endosome to the cell surface requires CHS5 and CHS6, mutant alleles of which trap Chs3p in the TGN/early endosome. Disruption of the clathrin adaptor protein complex 1 (AP-1) restores Chs3p transport to the plasma membrane. Similarly, in AP-1 deficient cells, the resident TGN/early endosome syntaxin, Tlg1p, is missorted. We propose that clathrin and AP-1 act to recycle Chs3p and Tlg1p from the early endosome to the TGN.  相似文献   

5.
We present the nucleotide sequences of two genes whose products are required for bacteriophage N4 adsorption. The nfrA gene encodes a 122-kDa outer membrane protein which presumably serves as the phage receptor. The nfrB gene encodes an 85-kDa inner membrane protein and may be a component of the receptor.  相似文献   

6.
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.  相似文献   

7.
Rad9 functions in the DNA-damage checkpoint pathway of Saccharomyces cerevisiae. In whole-cell extracts, Rad9 is found in large, soluble complexes, which have functions in amplifying the checkpoint signal. The two main soluble forms of Rad9 complexes that are found in cells exposed to DNA-damaging treatments were purified to homogeneity. Both of these Rad9 complexes contain the Ssa1 and/or Ssa2 chaperone proteins, suggesting a function for these proteins in checkpoint regula-tion. Consistent with this possibility, genetic experiments indicate redundant functions for SSA1 and SSA2 in survival, G2/M-checkpoint regulation, and phosphorylation of both Rad9 and Rad53 after irradiation with ultraviolet light. Ssa1 and Ssa2 can now be considered as novel checkpoint proteins that are likely to be required for remodelling Rad9 complexes during checkpoint-pathway activation.  相似文献   

8.
Five SWI genes are required for expression of the HO gene in yeast   总被引:34,自引:0,他引:34  
High-frequency mating type interconversion in yeast requires the HO gene, which encodes a site-specific endonuclease that initiates the switching process. We have isolated and analyzed switching-defective mutants. These mutants define five complementation and linkage groups, SWI 1 to SWI 5. We have shown by two assays, Northern hybridization and beta-galactosidase activity in strains containing an HO-lacZ fusion, that mutants defective any SWI gene fail to express the HO gene. In addition, all of the swi mutants exhibit other phenotypes, the most notable being the inviability of double mutants defective in SWI 4 and in either SWI 1, SWI 2 or SWI 3. These results indicate that the SWI genes function in some way as positive regulators of HO expression and have additional cellular roles.  相似文献   

9.
10.
11.
The structures of the 2.3- and 2.0-kilobase Epstein-Barr virus (EBV) mRNAs, partially encoded within the EcoRI J fragment DNA of the viral genome, were determined by analysis of their cDNAs. Both mRNAs are transcribed across the fused terminal repeats of the EBV episome and consist of nine exons. The mRNAs are transcribed from different promoters and have a unique 5' exon from the U5 region of the genome but eight common exons from the U1 region. One principal open reading frame is present in each mRNA and is predicted to encode 54,000- and 40,000-dalton integral membrane proteins. This result was confirmed by in vitro translation of RNAs in the presence of canine pancreatic microsomes. The 2.3-kilobase mRNA is not expressed in Raji cells, owing to the deletion of the 5' regulatory and coding region of this gene, whereas neither mRNA is expressed in Namalwa cells, owing to inactivation as a result of integration of the EBV genome via the terminal repeats. Since these mRNAs are readily detected in largely latently infected cells and do not increase in abundance with EBV replication, these putative latent-infection membrane proteins are tentatively designated LMP-2A and LMP-2B, respectively.  相似文献   

12.
Macroautophagy mediates the degradation of long-lived proteins and organelles via the de novo formation of double-membrane autophagosomes that sequester cytoplasm and deliver it to the vacuole/lysosome; however, relatively little is known about autophagosome biogenesis. Atg8, a phosphatidylethanolamine-conjugated protein, was previously proposed to function in autophagosome membrane expansion, based on the observation that it mediates liposome tethering and hemifusion in vitro. We show here that with physiological concentrations of phosphatidylethanolamine, Atg8 does not act as a fusogen. Rather, we provide evidence for the involvement of exocytic Q/t-SNAREs in autophagosome formation, acting in the recruitment of key autophagy components to the site of autophagosome formation, and in regulating the organization of Atg9 into tubulovesicular clusters. Additionally, we found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 transport. Thus, multiple SNARE-mediated fusion events are likely to be involved in autophagosome biogenesis.  相似文献   

13.
Claudin proteins are the major components of tight junctions connecting adjacent cells, where they regulate a variety of cellular activities. In the present paper we identified two Xenopus claudin5 genes (cldn5a and 5b), which are expressed early in the developing cardiac region. Precocious cldn5 expression was observed in explants of non-heart-forming mesoderm under inhibition of the canonical Wnt pathway. Cardiogenesis was severely perturbed by antisense oligonucleotides against cldn5 or by Cldn5 proteins lacking the cytoplasmic domain. Results of light- and electron-microscopic observations suggested that cldn5a and 5b are required for Xenopus heart tube formation through epithelialization of the precardiac mesoderm.  相似文献   

14.
7-methylguanosine (m7G) modification of tRNA occurs widely in eukaryotes and bacteria, is nearly always found at position 46, and is one of the few modifications that confers a positive charge to the base. Screening of a Saccharomyces cerevisiae genomic library of purified GST-ORF fusion proteins reveals two previously uncharacterized proteins that copurify with m7G methyltransferase activity on pre-tRNA(Phe). ORF YDL201w encodes Trm8, a protein that is highly conserved in prokaryotes and eukaryotes and that contains an S-adenosylmethionine binding domain. ORF YDR165w encodes Trm82, a less highly conserved protein containing putative WD40 repeats, which are often implicated in macromolecular interactions. Neither protein has significant sequence similarity to yeast Abd1, which catalyzes m7G modification of the 5' cap of mRNA, other than the methyltransferase motif shared by Trm8 and Abd1. Several lines of evidence indicate that both Trm8 and Trm82 proteins are required for tRNA m7G-methyltransferase activity: Extracts derived from strains lacking either gene have undetectable m7G methyltransferase activity, RNA from strains lacking either gene have much reduced m7G, and coexpression of both proteins is required to overproduce activity. Aniline cleavage mapping shows that Trm8/Trm82 proteins modify pre-tRNAPhe at G46, the site that is modified in vivo. Trm8 and Trm82 proteins form a complex, as affinity purification of Trm8 protein causes copurification of Trm82 protein in approximate equimolar yield. This functional two-protein family appears to be retained in eukaryotes, as expression of both corresponding human proteins, METTL1 and WDR4, is required for m7G-methyltransferase activity.  相似文献   

15.
SR (ser/arg) proteins have been shown to play roles in numerous aspects of pre-mRNA splicing, including modulation of alternative splicing, commitment of substrates to the splicing pathway, and splice site communication. The last of these, splice site communication, is particularly relevant to trans-splicing in which the 5' and 3' exons originate on separate molecules. The participation of SR proteins in naturally occurring, spliced leader RNA-dependent transsplicing has not been examined. Here, we have isolated SR proteins from an organism that performs both trans- and cis-splicing, the nematode Ascaris lumbricoides. To examine their activity in in vitro splicing reactions, we have also developed and characterized an SR protein-depleted whole-cell extract. When tested in this extract, the nematode SR proteins are required for both trans- and cis-splicing. In addition, the state of phosphorylation of the nematode SR proteins is critical to their activity in vitro. Interestingly, mammalian (HeLa) and A. lumbricoides SR proteins exhibit equivalent activities in cis-splicing, while the nematode SR proteins are much more active in trans-splicing. Thus, it appears that SR proteins purified from an organism that naturally trans-splices its pre-mRNAs promote this reaction to a greater extent than do their mammalian counterparts.  相似文献   

16.
The MDM31 and MDM32 genes are required for normal distribution and morphology of mitochondria in the yeast Saccharomyces cerevisiae. They encode two related proteins located in distinct protein complexes in the mitochondrial inner membrane. Cells lacking Mdm31 and Mdm32 harbor giant spherical mitochondria with highly aberrant internal structure. Mitochondrial DNA (mtDNA) is instable in the mutants, mtDNA nucleoids are disorganized, and their association with Mmm1-containing complexes in the outer membrane is abolished. Mutant mitochondria are largely immotile, resulting in a mitochondrial inheritance defect. Deletion of either one of the MDM31 and MDM32 genes is synthetically lethal with deletion of either one of the MMM1, MMM2, MDM10, and MDM12 genes, which encode outer membrane proteins involved in mitochondrial morphogenesis and mtDNA inheritance. We propose that Mdm31 and Mdm32 cooperate with Mmm1, Mmm2, Mdm10, and Mdm12 in maintenance of mitochondrial morphology and mtDNA.  相似文献   

17.
Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T-DNA), derived from its tumour-inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T-DNA also to monocotyledonous plants, yeasts and fungi. The T-DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T-DNA recipient to demonstrate that the non-homologous end-joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T-DNA into the host genome. We discovered a minor pathway for T-DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T-DNA integration at the telomeric regions in the rad50, mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.  相似文献   

18.
We have investigated the role of acetylcholine receptors (AChRs) in an early step of postsynaptic assembly at the neuromuscular synapse, the clustering of postsynaptic proteins induced by nerve-released agrin. To achieve this, we used two variants of C2 myotubes virtually lacking AChRs and C2 cells in which surface AChRs were down-regulated by AChR antibodies. In all cases, agrin caused normal clustering of the agrin receptor component MuSK, alpha-dystrobrevin and utrophin, but failed to aggregate AChRs, alpha- and beta-dystroglycan, syntrophin isoforms and rapsyn, an AChR-anchoring protein necessary for postsynaptic assembly and AChR clustering. In C2 variants, the stability of rapsyn was decreased, whereas in antibody-treated cells, rapsyn efficiently co-localized with remaining AChRs in microaggregates. Upon ectopic injection into myofibers in vivo, rapsyn did not form clusters in the absence of AChRs. These results show that AChRs and rapsyn are interdependent components of a pre-assembled protein complex that is required for agrin-induced clustering of a full set of postsynaptic proteins, thus providing evidence for an active role of AChRs in postsynaptic assembly.  相似文献   

19.
20.
Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号