首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of 4-methylumbelliferyl-p-guanidinobenzoate hydrochloride (MUGB) as active-site titrant for tissue-type plasminogen activator (t-PA) was studied in comparison to urokinase. Although t-PA was capable of cleaving MUGB, active-site titration of t-PA (one-chain form as well as two-chain form) with MUGB was not possible, whereas MUGB titration of urokinase could be performed. We therefore studied the kinetics of the interaction of these two plasminogen activators with MUGB. The equilibrium dissociation constant, KS, for the interaction between MUGB and urokinase was 2.9 X 10(-6) M, and for the interaction with t-PA 3.13 X 10(-5) M. However, one main requirement for active-site titration, namely a stable acyl enzyme intermediate (ES'), was only fulfilled for MUGB urokinase but not for MUGB t-PA. Whereas for the reaction of MUGB and urokinase the first-order acylation rate constant k2 was found to be about 10(6)-times higher than the first-order deacylation rate constant k3 (k2 = 3.76 X 10(-1) s-1, k3 = 3.7 X 10(-7) s-1), the k2/k3 ratio for the reaction of MUGB and t-PA (one- and two-chain form) was 0.77 to 3.85. Therefore, urokinase and t-PA differ in their reaction with this fluorogenic substrate and MUGB cannot be used for active-site titration of tPA.  相似文献   

2.
The first contact of mammalian gametes is the binding of the spermatozoon to the zona pellucida of the egg. Previous work has shown that binding of the spermatozoon to the zona in the mouse occurs prior to the acrosome reaction and that trypsin inhibitors block this initial binding. This suggests that the sperm surface contains a trypsinlike binding site that functions by an active site mechanism to effect initial zona binding. When suspensions of twice-washed spermatozoa were incubated with the serine protease active site titrant, 4-methylumbelliferyl p-guanidinobenzoate (MUGB), the titrant was hydrolyzed at a rate of 8 pmoles/min-10(6) cells. MUGB was found to inhibit the binding of spermatozoa to the zona pellucida. The degree of inhibition and the rate of hydrolysis of MUGB by washed spermatozoa depend on the concentration of titrant, with half maximal effects at 13 microM and a linear correlation with r = 0.99. The analogous lysyl and arginyl trypsin substrates containing 7-amino-4-methylcoumarin as the fluorogenic leaving group were not hydrolyzed under the same conditions and did not inhibit zona binding. Both binding of sperm to zona-intact eggs and the hydrolysis of MUGB by sperm are inhibited by p-nitrophenyl guanidinobenzoate, soybean trypsin inhibitor, and acid-solubilized zonae. The linear correlation coefficients of the inhibition of sperm binding and MUGB hydrolysis by these three substances are greater than 0.92. This "trypsinlike" sperm site is essential for sperm binding to the zona: its stereospecificity is unique in that it reacts with trypsin inhibitors but not with trypsin substrates.  相似文献   

3.
M Philipp  I H Tsai  M L Bender 《Biochemistry》1979,18(17):3769-3773
The p-nitrophenyl esters of straight-chain fatty acids were used as substrates of the enzyme subtilisin Novo (EC 3.4.4.16) and its chemically produced artificial enzyme thiolsubtilisin. Subtilisin and thiolsubtilisin pH--activity profiles were determined, and kinetic effects of the active site O-S substitution were observed. Among the substrates tested, both enzymes show highest specificity with p-nitrophenyl butyrate. It was also found that subtilisin is more sensitive to changes in substrate chain length than is thiolsubtilisin. Second-order acylation rate constants (k2/Ks) are remarkably similar for both enzymes. However, thiolsubtilisin deacylation rate constants and Km values are lower than analogous subtilisin constants. While thiolsubtilisin deacylation rate constants give a pH profile identical with that of subtilisin, the pH profile of thiolsubtilisin acylation rate constants shows an active site pK value lowered from the subtilisin pK of 7.15 and exhibits an inflection point at pH 8.45, which is absent in subtilisin.  相似文献   

4.
Acylation of the aldehyde dehydrogenase.NADH complex by acetic anhydride leads to the production of acetaldehyde and NAD+. By monitoring changes in nucleotide fluorescence, the rate constant for acylation of the active site of the *enzyme.NADH complex was found to be 11 +/- 3 s-1. The rate of acylation by acetic anhydride at the group that binds aldehydes on the oxidative pathway is clearly rapid enough to maintain significant steady-state concentrations of the required active-site-acylated *enzyme.NADH intermediate despite the rapid hydrolysis of this *enzyme.acyl.NADH intermediate (5-10 s-1) [Blackwell, Motion, MacGibbon, Hardman & Buckley (1987) Biochem. J. 242, 803-808]. Hence reversal of the normal oxidative pathway can occur. However, although acylation of the aldehyde dehydrogenase.NADH complex by 4-nitrophenyl acetate also occurs rapidly with a rate constant of 10.9 +/- 0.6 s-1, even under the most extreme trapping conditions only very small amounts of acetaldehyde are detected [Loomes & Kitson (1986) Biochem. J. 235, 617-619]. Furthermore enzyme-catalysed hydrolysis of 4-nitrophenyl acetate is limited by the rate of deacylation of a group on the enzyme (0.4 s-1), which is an order of magnitude less than deacylation of the group at the active site (5-10 s-1). It is concluded that the enzyme-catalysed 4-nitrophenyl ester hydrolysis involves a group on the enzyme that is different from the active-site group that binds aldehydes on the normal oxidative pathway.  相似文献   

5.
The molecule 3',6'-bis(4-guanidinobenzoyloxy)-5-[N'-(4-carboxyphenyl)thioureido[spirop]isobenzofuran-1-(3H),9'-[9H]xanthen]-3-one, abbreviated FDE, was designed and synthesized as a fluorogenic active-site titrant for serine proteases. It is an analogue of p-nitrophenyl p-guanidino-benzoate (NPGB) in which a fluorescein derivative is substituted for p-nitrophenol. FDE and NPGB exhibit similar kinetic characteristics in an active-site titration of trypsin in phosphate-buffered saline, pH 7.2. The rate of acylation with FDE is extremely fast (k2 = 1.05 s-1) and the rate of deacylation extremely slow (k3 = 1.66 X 10(-5) s-1). The Ks is 3.06 X 10(-6) M, and the Km(app) is 4.85 X 10(-11) M. With two of the serine proteases involved in fibrinolysis, the rate of acylation with FDE is also fast, K2 = 0.112 s-1 for urokinase and 0.799 s-1 for plasmin, and the rate of deacylation is slow, k3 = 3.64 X 10(-4) s-1 for urokinase and 6.27 X 10(-6) s-1 for plasmin. The solubility limit of FDE in phosphate-buffered saline is 1.3 X 10(-5) M, and the first-order rate constant for spontaneous hydrolysis is 5.1 X 10(-6) s-1. The major difference between FDE and NPGB is the detectability of the product in an active-site titration. p-Nitrophenol can be detected at concentrations no lower than 10(-6) M whereas fluorescein can be detected at concentrations as low as 10(-12) M. Thus, FDE should be useful in quantitatively assaying serine proteases as very low concentrations.  相似文献   

6.
Methylmalonate-semialdehyde dehydrogenase (MSDH) belongs to the CoA-dependent aldehyde dehydrogenase subfamily. It catalyzes the NAD-dependent oxidation of methylmalonate semialdehyde (MMSA) to propionyl-CoA via the acylation and deacylation steps. MSDH is the only member of the aldehyde dehydrogenase superfamily that catalyzes a β-decarboxylation process in the deacylation step. Recently, we demonstrated that the β-decarboxylation is rate-limiting and occurs before CoA attack on the thiopropionyl enzyme intermediate. Thus, this prevented determination of the transthioesterification kinetic parameters. Here, we have addressed two key aspects of the mechanism as follows: 1) the molecular basis for recognition of the carboxylate of MMSA; and 2) how CoA binding modulates its reactivity. We substituted two invariant arginines, Arg-124 and Arg-301, by Leu. The second-order rate constant for the acylation step for both mutants was decreased by at least 50-fold, indicating that both arginines are essential for efficient MMSA binding through interactions with the carboxylate group. To gain insight into the transthioesterification, we substituted MMSA with propionaldehyde, as both substrates lead to the same thiopropionyl enzyme intermediate. This allowed us to show the following: 1) the pK(app) of CoA decreases by ~3 units upon binding to MSDH in the deacylation step; and 2) the catalytic efficiency of the transthioesterification is increased by at least 10(4)-fold relative to a chemical model. Moreover, we observed binding of CoA to the acylation complex, supporting a CoA-binding site distinct from that of NAD(H).  相似文献   

7.
Several esters of 4-methylumbelliferone and 2-naphthol were synthesized and examined as possible spectrofluorimetric titrants for bovine alpha-chymotrypsin, trypsin, thrombin, Factor Xa and for subtilisin Novo. 4-Methylumbelliferyl p-guanidinobenzoate hydrochloride (MUGB) is a satisfactory titrant for alpha- and beta-trypsin, thrombin and Factor Xa and 4-methylumbelliferyl p-(NNN-trimethylammonium)cinnamate (MUTMAC) is a good titrant for alpha-chymotrypsin. The amount of enzyme used for spectrofluorimetric titration is 0.02-3.00nmol and the amount of 4-methylumbelliferone liberated is independent of the concentration of titrant and stoicheiometrically equal to the amount of enzyme used. Results obtained with MUGB and MUTMAC have been checked by spectrophotometric titration with p'-nitrophenyl p-guanidinobenzoate hydrochloride and p-nitrophenyl N(2)-acetyl-N(1)-benzylcarbazate respectively. p-Nitrophenyl N(2)-acetyl-N(1)-(9-anthrylmethyl)carbazate has been synthesized; it did not react with alpha-chymotrypsin. A satisfactory spectrofluorimetric titrant for subtilisin Novo was not discovered.  相似文献   

8.
Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.  相似文献   

9.
At the aim of investigating whether the early rapid phase of enzyme turnover is different in reverse micelles compared with bulk water, the kinetic properties of alpha-chymotrypsin have been studied in reverse micelles formed by sodium bis(2-ethylhexyl)sulfosuccinate in isooctane. Pre-steady state and steady-state kinetic constants, in water and in reverse micelles, have been determined by stopped-flow spectrophotometry for the hydrolysis of two substrates, namely acetyl-L-tryptophan-p-nitrophenyl ester and p-nitrophenyl acetate. It has been shown that, for both substrates, the acylation rate constant (k2) is very much lower in reverse micelles than in water. However, the deacylation rate constant (k3) and the turnover number (kcat) are not significantly changed in reverse micelles with respect to bulk water. Therefore, despite considerable rate changes in the acylation step, deacylation is rate limiting both in water as well as in reverse micelles, under the experimental conditions used.  相似文献   

10.
A possible source of discrepancy between kinetic and spectroscopic studies of the active site ionizations in the enzyme trypsin (EC 3.4.21.4) could arise if a slow pH-dependent conformational change affected the rates at low pH. No such effect is observed within the time range of 1 min- 3 h when pre-incubation of trypsin at pH 2.0 or at pH 6.9 precedes the enzymatic hydrolysis of Nalpha-carbobenzoxy-L-lysine-p-nitrophenyl ester. The deacylation rate of this hydrolysis depends on a single pKa on the enzyme between pH 3 and pH 7.  相似文献   

11.
We investigated the effects of mutations at positions 164 and 179 of the TEM(pUC19) beta-lactamase on turnover of substrates. The direct consequence of some mutations at these sites is that clinically important expanded-spectrum beta-lactams, such as third-generation cephalosporins, which are normally exceedingly poor substrates for class A beta-lactamases, bind the active site of these mutant enzymes more favorably. We employed site-saturation mutagenesis at both positions 164 and 179 to identify mutant variants of the parental enzyme that conferred resistance to expanded-spectrum beta-lactams by their enhanced ability to turn over these antibiotic substrates. Four of these mutant variants, Arg(164) --> Asn, Arg(164) --> Ser, Asp(179) --> Asn, and Asp(179) --> Gly, were purified and the details of their catalytic properties were examined in a series of biochemical and kinetic experiments. The effects on the kinetic parameters were such that either activity with the expanded-spectrum beta-lactams remained unchanged or, in some cases, the activity was enhanced. The affinity of the enzyme for these poorer substrates (as defined by the dissociation constant, K(s)) invariably increased. Computation of the microscopic rate constants (k(2) and k(3)) for turnover of these poorer substrates indicated either that the rate-limiting step in turnover was the deacylation step (governed by k(3)) or that neither the acylation nor deacylation became the sole rate-limiting step. In a few instances, the rate constants for both the acylation (k(2)) and deacylation (k(3)) of the extended-spectrum beta-lactamase were enhanced. These results were investigated further by molecular modeling experiments, using the crystal structure of the TEM(pUC19) beta-lactamase. Our results indicated that severe steric interactions between the large 7beta functionalities of the expanded-spectrum beta-lactams and the Omega-loop secondary structural element near the active site were at the root of the low affinity by the enzyme for these substrates. These conclusions were consistent with the proposal that the aforementioned mutations would enlarge the active site, and hence improve affinity.  相似文献   

12.
Penicillin-binding protein 5 (PBP 5) of Escherichia coli functions as a d-alanine carboxypeptidase (CPase), cleaving d-alanine from the C terminus of cell wall peptides. Like all PBPs, PBP 5 forms a covalent acyl-enzyme complex with beta-lactam antibiotics; however, PBP 5 is distinguished by its high rate of deacylation of the acylenzyme complex (t(1/2) approximately 10 min). A Gly105 --> Asp mutation in PBP 5 markedly impairs deacylation with only minor effects on acylation, and abolishes CPase activity. We have determined the three-dimensional structure of a soluble form of wild-type PBP 5 at 1.85-A resolution and have also refined the structure of the G105D mutant form of PBP 5 to 1.9-A resolution. Comparison of the two structures reveals that the major effect of the mutation is to disorder a loop comprising residues 74-90 that sits atop the SXN motif of the active site. Deletion of the 74-90 loop in wild-type PBP 5 markedly diminished the deacylation rate of penicillin G with a minimal impact on acylation, and abolished CPase activity. These effects were very similar to those observed in the G105D mutant, reinforcing the idea that this mutation causes disordering of the 74-90 loop. Mutation of two consecutive serines within this loop, which hydrogen bond to Ser110 and Asn112 in the SXN motif, had marked effects on CPase activity, but not beta-lactam antibiotic binding or hydrolysis. These data suggest a direct role for the SXN motif in deacylation of the acyl-enzyme complex and imply that the functioning of this motif is modulated by the 74-90 loop.  相似文献   

13.
Kinetic interactions of beta-lactam antibiotics such as penicillin-G and cefotaxime with normal, penicillin-susceptible PBP2x from Streptococcus pneumoniae and a penicillin-resistant PBP2x (PBP2x(R)) from a resistant clinical isolate (CS109) of the bacterium have been extensively characterized using electrospray mass spectrometry coupled with a fast reaction (quench flow) technique. Kinetic evidence for a two-step acylation of PBP2x by penicillin-G has been demonstrated, and the dissociation constant, K(d) of 0.9 mm, and the acylation rate constant, k(2) of 180 s(-1), have been determined for the first time. The millimolar range K(d) implies that the beta-lactam fits to the active site pocket of the penicillin-sensitive PBP rather poorly, whereas the extremely fast k(2) value indicates that this step contributes most of the binding affinity of the beta-lactam. The values of K(d) (4 mm) and k(2) (0.56 s(-1)) were also determined for PBP2x(R). The combined value of k(2)/K(d), known as overall binding efficiency, for PBP2x(R) (137 m(-1) s(-1)) was over 1000-fold slower than that for PBP2x (200,000 m(-1) s(-1)), indicating that a major part is played by the acylation steps in penicillin resistance. Most of the decreased binding efficiency of PBP2x(R) comes from the decreased ( approximately 300-fold) k(2). Kinetic studies of cefotaxime acylation of the two PBP2x proteins confirmed all of the above findings. Deacylation rate constants (k(3)) for the third step of the interactions were determined to be 8 x 10(-6) s(-1) for penicilloyl-PBP2x and 5.7 x 10(-4) s(-1) for penicilloyl-PBP2x(R), corresponding to over 70-fold increase of the deacylation rate for the resistant PBP2x(R). Similarly, over 80-fold enhancement of the deacylation rate was found for cefotaxime-PBP2x(R) complex (k(3) = 3 x 10(-4) s(-1)) as compared with that of cefotaxime-PBP2x complex (3.5 x 10(-6) s(-1)). This is the first time that such a significant increase of k(3) values was found for a beta-lactam-resistant penicillin-binding protein. These data indicate that the deacylation step also plays a role, which is much more important than previously thought, in PBP2x(R) resistance to beta-lactams.  相似文献   

14.
Penicillin-binding protein 5 (PBP 5) of Escherichia coli functions as a d-alanine carboxypeptidase, cleaving the C-terminal d-alanine residue from cell wall peptides. Like all PBPs, PBP 5 forms a covalent acyl-enzyme complex with beta-lactam antibiotics; however, PBP 5 is distinguished by its high rate of deacylation of the acyl-enzyme complex (t(12) approximately 9 min). A Gly-105 --> Asp mutation in PBP 5 markedly impairs this beta-lactamase activity (deacylation), with only minor effects on acylation, and promotes accumulation of a covalent complex with peptide substrates. To gain further insight into the catalytic mechanism of PBP 5, we determined the three-dimensional structure of the G105D mutant form of soluble PBP 5 (termed sPBP 5') at 2.3 A resolution. The structure is composed of two domains, a penicillin binding domain with a striking similarity to Class A beta-lactamases (TEM-1-like) and a domain of unknown function. In addition, the penicillin-binding domain contains an active site loop spatially equivalent to the Omega loop of beta-lactamases. In beta-lactamases, the Omega loop contains two amino acids involved in catalyzing deacylation. This similarity may explain the high beta-lactamase activity of wild-type PBP 5. Because of the low rate of deacylation of the G105D mutant, visualization of peptide substrates bound to the active site may be possible.  相似文献   

15.
An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution.  相似文献   

16.
An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution.  相似文献   

17.
Structural analysis of acetylcholinesterase (AChE) has revealed two sites of ligand interaction in the active site gorge: an acylation site at the base of the gorge and a peripheral site at its mouth. A goal of our studies is to understand how ligand binding to the peripheral site alters the reactivity of substrates and organophosphates at the acylation site. Kinetic rate constants were determined for the phosphorylation of AChE by two fluorogenic organophosphates, 7-[(diethoxyphosphoryl)oxy]-1-methylquinolinium iodide (DEPQ) and 7-[(methylethoxyphosphonyl)oxy]-4-methylcoumarin (EMPC), by monitoring release of the fluorescent leaving group. Rate constants obtained with human erythrocyte AChE were in good agreement with those obtained for recombinant human AChE produced from a high level Drosophila S2 cell expression system. First-order rate constants kOP were 1,600 +/- 300 min-1 for DEPQ and 150 +/- 11 min-1 for EMPC, and second-order rate constants kOP/KOP were 193 +/- 13 microM-1 min-1 for DEPQ and 0.7-1.0 +/- 0.1 microM-1 min-1 for EMPC. Binding of the small ligand propidium to the AChE peripheral site decreased kOP/KOP by factors of 2-20 for these organophosphates. Such modest inhibitory effects are consistent with our recently proposed steric blockade model (Szegletes, T., Mallender, W. D., and Rosenberry, T. L. (1998) Biochemistry 37, 4206-4216). Moreover, the binding of propidium resulted in a clear increase in kOP for EMPC, suggesting that molecular or electronic strain caused by the proximity of propidium to EMPC in the ternary complex may promote phosphorylation. In contrast, the binding of the polypeptide neurotoxin fasciculin to the peripheral site of AChE dramatically decreased phosphorylation rate constants. Values of kOP/KOP were decreased by factors of 10(3) to 10(5), and kOP was decreased by factors of 300-4,000. Such pronounced inhibition suggested a conformational change in the acylation site induced by fasciculin binding. As a note of caution to other investigators, measurements of phosphorylation of the fasciculin-AChE complex by AChE inactivation gave misleading rate constants because a small fraction of the AChE was resistant to inhibition by fasciculin.  相似文献   

18.
A pre-steady state kinetic analysis of the stimulation by monovalent cations of the activity of bovine activated protein C (APC) and a proteolytic fragment of APC, des-1-41-light chain activated protein C (GDAPC), toward the substrate, 4-methylumbelliferyl p-guanidinobenzoate, has been undertaken. With the cations Na+ and Cs+, at least two cation sites, or classes of sites, on APC were found to be important to the kinetic effects observed. For GDAPC, with both monovalent cations investigated, a single cation-binding site, or class of sites, of kinetic importance was discovered. The most general mechanism that fits all kinetic data was a rapid equilibrium type, with the cation(s) (A) and substrate (S) binding to the enzyme in a random fashion. Cations were found to be essential activators, and only formation of the EAS or EA2S complex led to product generation. For each enzyme, stimulation of the reaction rates was found to be chiefly due to a dramatic enhancement by monovalent cations of the rate constant (k2) for acylation of the enzyme since the dissociation constant (Ks) for enzyme-substrate interactions was increased in the presence of cations, and the deacylation rate constant (k3) was not affected by these activators.  相似文献   

19.
The rate constants for both acylation and deacylation of beta-lactamase PC1 from Staphylococcus aureus and the RTEM beta-lactamase from Escherichia coli were determined by the acid-quench method [Martin & Waley (1988) Biochem. J. 254, 923-925] with several good substrates, and, for a wider range of substrates, of beta-lactamase I from Bacillus cereus. The values of the acylation and deacylation rate constants for benzylpenicillin were approximately the same (i.e. differing by no more than 2-fold) for each enzyme. The variation of kcat./Km for benzylpenicillin with the viscosity of the medium was used to obtain values for all four rate constants in the acyl-enzyme mechanism for all three enzymes. The reaction is partly diffusion-controlled, and the rate constant for the dissociation of the enzyme-substrate complex has approximately the same value as the rate constants for acylation and deacylation. Thus all three first-order rate constants have comparable values. Here there is no single rate-determining step for beta-lactamase action. This is taken to be a sign of a fully efficient enzyme.  相似文献   

20.
The formation of N-butyrylhomoserine lactone catalyzed by RhlI has been investigated by transient-state kinetic methods. A single intermediate, assigned to N-butyryl- S-adenosylmethionine, was observed. Under single-turnover conditions, the intermediate formed with a rate constant of 4.0 +/- 0.2 s (-1) and decayed with a rate constant of 3.7 +/- 0.2 s (-1). No other intermediates were detected, demonstrating that the RhlI reaction proceeds via acylation of S-adenosylmethionine, followed by lactonization. S-Adenosylhomocysteine acted as a pseudosubstrate, in that it did not undergo either acylation or lactonization but did induce the deacylation of butyryl-acyl carrier protein. The K m for S-adenosylhomocysteine was approximately 15-fold higher than the K m for S-adenosylmethionine. The reactivities of acylated and unacylated sulfonium ions that were analogues of S-adenosylmethionine were investigated by computational methods. The calculations indicated that acylation of the substrate amino group activated the substrate for lactonization, by allowing the carboxyl group oxygen to approach more closely the methylene carbon to which it adds. This observation provides a satisfying chemical rationale for the order of the individual reactions in the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号