首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have a preventive effect against colorectal cancer. Although inhibition of cyclooxygenase-2 plays a crucial role in the suppression of tumors, precise mechanisms of their action remain to be disclosed. To identify genes involved in the growth-suppressive effect of NSAIDs, we utilized cDNA microarray containing 23,040 genes and analyzed time-dependent alteration of gene expression in response to sulindac or aspirin in NSAIDs-sensitive SW480 and SW948 colon-cancer cells as well as in relatively resistant SNU-C4 cells. Consequently we identified 112 genes with commonly altered expression by sulindac and 176 with commonly altered expression by aspirin in the three lines. Addition of sulindac and that of aspirin altered expression levels of 130 and 140 genes, respectively, in SW480 and SW948 cells but not in SNU-C4 cells. These data may lead to a better understanding of growth-suppressive effects on colonic epithelium, and may provide clues for identifying novel therapeutic and/or preventive molecular targets of colon cancer.  相似文献   

2.
We employed a genetically defined human cancer model to investigate the contributions of two genes up-regulated in several cancers to phenotypic changes associated with late stages of tumorigenesis. Specifically, tumor cells expressing two structurally unrelated bone-related genes, osteonectin and osteoactivin, acquired a highly invasive phenotype when implanted intracranially in immunocompromised mice. Mimicking a subset of gliomas, tumor cells invaded brain along blood vessels and developed altered vasculature at the brain-tumor interface, suggesting that production of those two proteins by tumor cells may create a complex relationship between invading tumor and vasculature co-opted during tumor invasion. Interestingly, the same tumor cells formed massive spontaneous metastases when implanted subcutaneously. This dramatic alteration in tumor phenotype indicates that cellular microenvironment plays an important role in defining the specific effects of those gene products in tumor behavior. In vitro examination of tumor cells expressing either osteonectin or osteoactivin revealed that there was no impact on cellular growth or death but increased invasiveness and expression of MMP-9 and MMP-3. Specific pharmacologic inhibitors of MMP-2/9 and MMP-3 blocked the increased in vitro invasion associated with osteoactivin expression, but only MMP-3 inhibition altered the invasive in vitro phenotype mediated by osteonectin. Results from this genetically defined model system are supported by similar findings obtained from several established tumor cell lines derived originally from human patients. In sum, these results reveal that the expression of a single bone-related gene can dramatically alter or modify tumor cell behavior and may confer differential growth characteristics in different microenvironments. Genetically defined human cancer models offer useful tools in functional genomics to define the roles of specific genes in late stages of carcinogenesis.  相似文献   

3.
Increase in reactive oxygen species plays an integral part in the inflammatory response, and chronic inflammation increases cancer risk. Selenium-dependent glutathione peroxidase (GPX) is well recognized for its antioxidant, and thus anti-inflammatory, activity. However, due to the multiple antioxidant families present in the gastrointestinal tract, it has been difficult to demonstrate the importance of individual antioxidant enzymes. Using genetically altered mice deficient in individual Gpx genes has provided insight into the physiological functions of these genes. Insufficient GPX activity in the mucosal epithelium can trigger acute and chronic inflammation. The presence of certain microflora, such as Helicobacter species, may affect cancer risk significantly. However, when damaged cells have progressed into a precancerous status, increased GPX activity may become procarcinogenic, presumably due to inhibition of hydroperoxide-mediated apoptosis. This review summarizes the current view of GPX in inflammation and cancer with emphasis on the GI tract.  相似文献   

4.
During the past 2 decades, the elucidation of susceptibility and causative genes for Alzheimer disease as well as proteins involved in the pathogenic process has greatly facilitated the development of genetically altered mouse models. These models have played a major role in defining critical disease-related mechanisms and in evaluating novel therapeutic approaches, with many treatments currently in clinical trial owing their origins to studies initially performed in mice. This review discusses the utility of transgenic mice as a research tool and their contributions to our understanding of Alzheimer disease.  相似文献   

5.
The arachidonic acid (AA) cascade involves the release of AA from the membrane phospholipids by a phospholipase A(2), followed by its subsequent metabolism to bioactive prostanoids by cyclooxygenases coupled with terminal synthases. Altered brain AA metabolism has been implicated in neurological, neurodegenerative, and psychiatric disorders. The development of genetically altered mice lacking specific enzymes of the AA cascade has helped to elucidate the individual roles of these enzymes in brain physiology and pathology. The roles of AA and its metabolites in brain physiology, with a particular emphasis on the phospholipase A(2)/cyclooxygenases pathway, are summarized, and the specific phenotypes of genetically altered mice relevant to brain physiology and neurotoxic models are discussed.  相似文献   

6.
Two anatomical patterns characterize the neocortex, and both are essential for normal cortical function. First, neocortex is divided into anatomically distinct and functionally specialized areas that form a species-specific map. Second, neocortex is composed of layers that organize cortical connectivity. Recent studies of layer and area development have used time-lapse microscopy to follow cortical cell division and migration, gene arrays to find layer- or area- specific regulatory genes, time- and region- specific manipulations of candidate genes, and optical imaging to compare area maps in wild type with genetically altered mice. New observations clarify the molecular and cellular mechanisms that generate each pattern, and stress the links between layer and area formation.  相似文献   

7.
What is the relationship between the wound-healing process and the development of cancer? Malignant tumours often develop at sites of chronic injury, and tissue injury has an important role in the pathogenesis of malignant disease, with chronic inflammation being the most important risk factor. The development and functional characterization of genetically modified mice that lack or overexpress genes that are involved in repair, combined with gene-expression analysis in wounds and tumours, have highlighted remarkable similarities between wound repair and cancer. However, a few crucial differences were also observed, which could account for the altered metabolism, impaired differentiation capacity and invasive growth of malignant tumours.  相似文献   

8.
Transgenic mouse models for the prevention of breast cancer   总被引:3,自引:0,他引:3  
Shen Q  Brown PH 《Mutation research》2005,576(1-2):93-110
Breast cancer prevention research has made remarkable progress in the past decade. Much of this progress has come from clinical trials. However, in the future to test the many promising agents that are now available, pre-clinical models of breast cancer are needed. Such models are now available. Useful models include rat and mouse models, particularly, the genetically engineered mice (GEM). Many transgenic mouse models have been generated by manipulating growth factors and their receptors, cell cycle regulators, signal transduction pathways, cellular differentiation, oncogenes and tumor suppressor genes. The transgenes are induced to express in the mouse mammary glands under the control of various transgenic promoters, which have respective characteristics in expression pattern and other biological attributes. These models are providing invaluable insight on the molecular mechanisms of breast tumorigenesis. In this review, we discuss the relative relevance of the most commonly used transgenic mouse models for breast cancer prevention studies, and provide examples of how these transgenic models can be used to conduct cancer prevention research. Due to the multi-factor, multi-step nature of breast cancer, many factors should be incorporated into a valid prevention study. However, many barriers to progress must be overcome, including access to and availability of new cancer preventive drugs, and difficulties in conducting studies of combinations of preventive agents.  相似文献   

9.
Tumor suppressor genes have been shown to be necessary for proper maintenance of cell growth control. Inactivation of these genes in the germline of humans is linked to inherited cancer predisposition. Moreover, sporadically arising human tumors often have somatic mutations in tumor suppressor genes. During the past few years, advances in molecular and cellular biology have led to the creation of animal models that have germline mutations of various tumor suppressor genes. Such mice potentially represent important animal models for familial cancer predisposition syndromes, and the study of the tumorigenesis process has been greatly assisted by their development. Such models have also demonstrated the importance of tumor suppressor function in embryonic development. In this review, we describe mice with inactivated germline tumor suppressor genes that are genetically analogous to 10 different inherited cancer syndromes in humans. We describe the variable usefulness of the mutant mice as models for human disease.  相似文献   

10.
《Reproductive biology》2014,14(1):16-24
Prostate cancer is a very common malignancy among Western males. Although most tumors are indolent and grow slowly, some grow and metastasize aggressively. Because prostate cancer growth is usually androgen-dependent, androgen ablation offers a therapeutic option to treat post-resection tumor recurrence or primarily metastasized prostate cancer. However, patients often relapse after the primary response to androgen ablation therapy, and there is no effective cure for cases of castration-resistant prostate cancer (CRPC). The mechanisms of tumor growth in CRPC are poorly understood. Although the androgen receptors (ARs) remain functional in CRPC, other mechanisms are clearly activated (e.g., disturbed growth factor signaling). Results from our laboratory and others have shown that dysregulation of fibroblast growth factor (FGF) signaling, including FGF receptor 1 (FGFR1) activation and FGF8b overexpression, has an important role in prostate cancer growth and progression. Several experimental models have been developed for prostate tumorigenesis and various stages of tumor progression. These models include genetically engineered mice and rats, as well as induced tumors and xenografts in immunodeficient mice. The latter was created using parental and genetically modified cell lines. All of these models greatly helped to elucidate the roles of different genes in prostate carcinogenesis and tumor progression. Recently, patient-derived xenografts have been studied for possible use in testing individual, specific responses of tumor tissue to different treatment options. Feasible and functional CRPC models for drug responsiveness analysis and the development of effective therapies targeting the FGF signaling pathway and other pathways in prostate cancer are being actively investigated.  相似文献   

11.
12.
13.
The S100 protein family is the largest subgroup within the superfamily of proteins carrying the Ca2+-binding EF-hand motif. Despite their small molecular size and their conserved functional domain of two distinct EF-hands, S100 proteins developed a plethora of tissue-specific intra- and extracellular functions. Accordingly, various diseases such as cardiomyopathies, neurodegenerative and inflammatory disorders, and cancer are associated with altered S100 protein levels. Here, we review the different S100 protein functions and related diseases from an evolutionary point of view. We analyzed the structural variations, which are the basis of functional diversification, as well as the genomic organization of the S100 family in human and compared it with the S100 repertoires in mouse and rat. S100 genes and proteins are highly conserved between the different mammalian species. Moreover, we identified evolutionary related subgroups of S100 proteins within the three species, which share functional similarity and form subclusters on the genomic level. The available S100-specific mouse models are summarized and the consequences of our results are discussed with regard to the use of genetically engineered mice as human disease models. An update of the S100 nomenclature is included, because some of the recently identified S100 genes and pseudogenes had to be renamed.  相似文献   

14.
In the science-fiction thriller film Minority Report, a specialized police department called “PreCrime” apprehends criminals identified in advance based on foreknowledge provided by 3 genetically altered humans called “PreCogs”. We propose that Yamanaka stem cell technology can be similarly used to (epi)genetically reprogram tumor cells obtained directly from cancer patients and create self-evolving personalized translational platforms to foresee the evolutionary trajectory of individual tumors. This strategy yields a large stem cell population and captures the cancer genome of an affected individual, i.e., the PreCog-induced pluripotent stem (iPS) cancer cells, which are immediately available for experimental manipulation, including pharmacological screening for personalized “stemotoxic” cancer drugs. The PreCog-iPS cancer cells will re-differentiate upon orthotopic injection into the corresponding target tissues of immunodeficient mice (i.e., the PreCrime-iPS mouse avatars), and this in vivo model will run through specific cancer stages to directly explore their biological properties for drug screening, diagnosis, and personalized treatment in individual patients. The PreCog/PreCrime-iPS approach can perform sets of comparisons to directly observe changes in the cancer-iPS cell line vs. a normal iPS cell line derived from the same human genetic background. Genome editing of PreCog-iPS cells could create translational platforms to directly investigate the link between genomic expression changes and cellular malignization that is largely free from genetic and epigenetic noise and provide proof-of-principle evidence for cutting-edge “chromosome therapies” aimed against cancer aneuploidy. We might infer the epigenetic marks that correct the tumorigenic nature of the reprogrammed cancer cell population and normalize the malignant phenotype in vivo. Genetically engineered models of conditionally reprogrammable mice to transiently express the Yamanaka stemness factors following the activation of phenotypic copies of specific cancer diseases might crucially evaluate a “reprogramming cure” for cancer. A new era of xenopatients 2.0 generated via nuclear reprogramming of the epigenetic landscapes of patient-derived cancer genomes might revolutionize the current personalized translational platforms in cancer research.  相似文献   

15.
16.
17.
Transgenic, knockout and knockin mice are useful tools for linking specific genes with behaviour and other complex biological processes. However, complications arising due to compensatory changes, genetic background differences and other factors could lead to difficulty in interpreting the resulting changes in phenotype. We have used fluorescence two-dimensional differential in-gel electrophoresis in combination with matrix-assisted laser desorption/ionization-time of flight mass fingerprinting to investigate the possibility that distinct genetic alterations can lead to common protein expression changes in genetically modified mice. Brain proteomes were compared from two transgenic mouse strains (Tg2576 x TgPS1 and Tg2576), two knockout mouse strains (5-HT(7)R -/- and GABA(A)Ralpha5 -/-) and one knockin mouse strain (GABA(A)Ralpha1-H101R). Both of the transgenic models showed an isoform change in the heat shock 70 related protein, mortalin. The knockout and knockin models showed similar changes in mortalin expression along with an alteration of the anti-oxidant protein 2. The observed proteomic alterations indicate that stress-responsive protein pathways may be altered artefactually in all of the mouse models used in this study and highlights an area where caution is needed in interpreting proteomic changes in genetically modified mice.  相似文献   

18.
The impetus to develop useful models of human disease and toxicity has resulted in a number of large-scale mouse mutagenesis programmes. This, in turn, has stimulated considerable concern regarding the scientific validity and welfare of genetically altered mice, and the large numbers of mice that are required by such programmes. In this paper, the scientific advantages and limitations of genetically altered mice as models of several human diseases are discussed. We conclude that, while the use of some such mouse models has contributed considerably to an understanding of human disease and toxicity, other genetically altered mouse models have limited scientific relevance, and fewer have positively contributed to the development of novel human medicines. Suggestions for improving this unsatisfactory situation are made.  相似文献   

19.
Little is known about how specific genes influence taste function in mammals. One of the most promising ways to fill this void is to screen the progeny of chemically mutagenized (or genetically altered) mice for aberrant taste phenotypes and then identify the mutated gene(s) that is associated with each taste anomaly. To exploit this approach, a high-throughput and robust screening procedure is needed. We have attempted to meet this demand by developing an automated procedure that assesses taste responsiveness of individual mice to palatable and unpalatable taste stimuli. We focused on three taste stimuli (quinine hydrochloride, QHCl; sodium chloride, NaCl; and sucrose) and one mouse strain (C57BL/6). We used a commercially available gustometer system that both monitors the licking responses of mice and controls the presentation of each taste stimulus during successive 5 s trials. We describe a screening procedure that (after 2 days of simple training) can generate a concentration-response curve for NaCl or sucrose during a single 30 min test session, and for QHCl over three 30 min test sessions. A normative database based on the responses of 98 mice subjected to our screening procedure is also presented. We envision that investigators could use this normative database to assess taste function in the progeny of mutagenized (or genetically altered) mice. Any mouse that deviates significantly-e.g. three standard deviations (SD)-from the mean of the normative database would be flagged as having a potentially interesting mutation. We also developed an additional second screen for identifying mice with oromotor abnormalities. This latter screen is necessary because oromotor problems could lead to false positives or negatives in the screen for taste function, but is also useful for researchers interested in genes influencing oromotor circuitry. Throughout the development of the screening protocol, we sought to balance two conflicting demands: the need to maximize the screen's sensitivity and minimize its duration. This screen represents a significant improvement over the common two-bottle preference test because it assesses taste function more specifically and in a fraction of the time.  相似文献   

20.
Simultaneous P53 loss and activation of the PTEN-restricted PI3K-AKT pathway frequently occur in aggressive breast cancers. P53 loss causes genome instability, while PTEN loss and/or activating mutations of PIK3CA and AKT promote cancer cell proliferation that also increases incidences of genomic aberrations. However, the genomic alterations associated with P53 loss and activated PTEN-PI3K-AKT signaling in breast cancer have not been defined. Spatiotemporally controlled breast cancer models with inactivation of both P53 and Pten in adult mice have not been established for studying genomic alterations. Herein, we deleted both floxed Pten and Tp53 genes in the mammary gland epithelial cells in adult mice using a RCAS virus-mediated Cre-expressing system. These mice developed small tumors in 21 weeks, and poorly differentiated larger tumors in 26 weeks. In these tumors, we identified 360 genes mutated by nonsynonymous point mutations and small insertions and deletions (NSPMs/InDels), 435 genes altered by copy number amplifications (CNAs), and 450 genes inactivated by copy number deletions (CNDs). Importantly, 22.2%, 75.9% and 27.3% of these genes were also altered in human breast tumors with P53 and PTEN losses or P53 loss and activated PI3K-AKT signaling by NSPMs/InDels, CNAs and CNDs, respectively. Therefore, inactivation of P53 and Pten in adult mice causes rapid-growing breast tumors, and these tumors recapitulate a significant number of genetic aberrations in human breast tumors with inactivated P53 and activated PTEN-PI3K-AKT signaling. Further characterization of these commonly altered genes in breast cancer should help to identify novel cancer-driving genes and molecular targets for developing therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号