首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coral-bleaching bacterium Vibrio shiloi biosynthesizes and secretes an extracellular peptide, referred to as toxin P, which inhibits photosynthesis of coral symbiotic algae (zooxanthellae). Toxin P was produced during the stationary phase when the bacterium was grown on peptone or Casamino Acids media at 29 degrees C. Glycerol inhibited the production of toxin P. Toxin P was purified to homogeneity, yielding the following 12-residue peptide: PYPVYAPPPVVP (molecular weight, 1,295.54). The structure of toxin P was confirmed by chemical synthesis. In the presence of 12.5 mM NH(4)Cl, pure natural or synthetic toxin P (10 microM) caused a 64% decrease in the photosynthetic quantum yield of zooxanthellae within 5 min. The inhibition was proportional to the toxin P concentration. Toxin P bound avidly to zooxanthellae, such that subsequent addition of NH(4)Cl resulted in rapid inhibition of photosynthesis. When zooxanthellae were incubated in the presence of NH(4)Cl and toxin P, there was a rapid decrease in the pH (pH 7.8 to 7.2) of the bulk liquid, suggesting that toxin P facilitates transport of NH(3) into the cell. It is known that uptake of NH(3) into cells can destroy the pH gradient and block photosynthesis. This mode of action of toxin P can help explain the mechanism of coral bleaching by V. shiloi.  相似文献   

2.
Microbial diseases of corals and global warming   总被引:8,自引:0,他引:8  
Coral bleaching and other diseases of corals have increased dramatically during the last few decades. As outbreaks of these diseases are highly correlated with increased sea-water temperature, one of the consequences of global warming will probably be mass destruction of coral reefs. The causative agent(s) of a few of these diseases have been reported: bleaching of Oculina patagonica by Vibrio shiloi; black band disease by a microbial consortium; sea-fan disease (aspergillosis) by Aspergillus sydowii; and coral white plague possibly by Sphingomonas sp. In addition, we have recently discovered that Vibrio coralyticus is the aetiological agent for bleaching the coral Pocillopora damicornis in the Red Sea. In the case of coral bleaching by V. shiloi, the major effect of increasing temperature is the expression of virulence genes by the pathogen. At high summer sea-water temperatures, V. shiloi produces an adhesin that allows it to adhere to a beta-galactoside-containing receptor in the coral mucus, penetrate into the coral epidermis, multiply intracellularly, differentiate into a viable-but-not-culturable (VBNC) state and produce toxins that inhibit photosynthesis and lyse the symbiotic zooxanthellae. In black band disease, sulphide is produced at the coral-microbial biofilm interface, which is probably responsible for tissue death. Reports of newly emerging coral diseases and the lack of epidemiological and biochemical information on the known diseases indicate that this will become a fertile area of research in the interface between microbial ecology and infectious disease.  相似文献   

3.
Coral bleaching is a disease that threatens coral reefs throughout the world. The disease is correlated with higher-than-normal seawater temperatures. Data have been reported showing that bleaching of the coral Oculina patagonica during the summer in the Mediterranean Sea is the result of an infection with Vibrio shiloi. The summer temperatures induce the expression of virulence factors in the pathogen. We report here that V. shiloi produces an extracellular superoxide dismutase (SOD) at 30 degrees C, but not at 16 degrees C. An SOD(-) mutant was avirulent. The mutant adhered to corals, penetrated into coral cells, multiplied intracellularly for a short time, and then died. These data support the hypothesis that SOD protects the intracellular V. shiloi from oxidative stress caused by the high concentration of oxygen produced by intracellular zooxanthellae photosynthesis.  相似文献   

4.
The coral-bleaching bacterium Vibrio shiloi biosynthesizes and secretes an extracellular peptide, referred to as toxin P, which inhibits photosynthesis of coral symbiotic algae (zooxanthellae). Toxin P was produced during the stationary phase when the bacterium was grown on peptone or Casamino Acids media at 29°C. Glycerol inhibited the production of toxin P. Toxin P was purified to homogeneity, yielding the following 12-residue peptide: PYPVYAPPPVVP (molecular weight, 1,295.54). The structure of toxin P was confirmed by chemical synthesis. In the presence of 12.5 mM NH4Cl, pure natural or synthetic toxin P (10 μM) caused a 64% decrease in the photosynthetic quantum yield of zooxanthellae within 5 min. The inhibition was proportional to the toxin P concentration. Toxin P bound avidly to zooxanthellae, such that subsequent addition of NH4Cl resulted in rapid inhibition of photosynthesis. When zooxanthellae were incubated in the presence of NH4Cl and toxin P, there was a rapid decrease in the pH (pH 7.8 to 7.2) of the bulk liquid, suggesting that toxin P facilitates transport of NH3 into the cell. It is known that uptake of NH3 into cells can destroy the pH gradient and block photosynthesis. This mode of action of toxin P can help explain the mechanism of coral bleaching by V. shiloi.  相似文献   

5.
《农业工程》2014,34(3):165-169
Mutualistic relationship between coral polyps and their symbiotic zooxanthellae living within their tissues are the most essential features of a coral reef ecosystem. In this symbiotic system, the coral polyps provide a protected habitat, carbon dioxide and nutrients needed for photosynthesis to zooxanthellae; in turn, the symbiotic zooxanthellae provide food as products of photosynthesis to coral polyps. The Photosynthesis of zooxanthellae is therefore an important process of this symbiotic system as well as the development of the whole coral reef ecosystem. The recent application of chlorophyll fluorescence technique in the study of the zooxanthellae’s photosynthesis has greatly improved our understanding on the micro-ecology of corals and the symbiotic zooxanthellae. This paper summarizes the recent progress as the following aspects: (1) The ecological characteristics of the photosynthesis of symbiotic zooxanthellae, such as the diurnal and seasonal changes in the photochemical efficiency of the zooxanthellae, and the relationship between zooxanthellae photosynthesis and the world-wide coral bleaching. (2) The mechanism of corals acclimating to the changes of irradiance via spatial and temporal photoacclimations, including the corals’ photobiology; zooxanthella size, pigmentation, location and clade, and the relationship between light extremes and the corals’ metabolism and calcification. (3) The understanding of the response of zooxanthellae to various environmental stresses, such as long-term changes in the chlorophyll fluorescence of bleached and recovering corals; the tolerance of corals to thermal bleaching; the changes to photosystem II of symbiotic zooxanthellae after heat stress and bleaching. Due to the above findings, the chlorophyll fluorescence values of those coral species sensitive to environmental changes have been utilized as indicators of coral health as well as the status of coral reef ecosystems. In summary, the chlorophyll fluorescence technique has great potential in the understanding, monitoring, protecting and managing coral reefs.  相似文献   

6.
The past few decades have seen a world-wide increase in coral diseases, yet little is known about coral pathogens. In this study, techniques commonly used in pathogenomic research were applied to the coral pathogen Vibrio shiloi in order to identify genetic elements involved in its virulence. Suppressive subtractive hybridization was used to compare the gene content of V. shiloi to that of a closely related but non-pathogenic bacterium, Vibrio mediterranei, resulting in identification of several putative virulence factors and of three novel genomic islands. The entire genome of V. shiloi was further screened for genes related to previously characterized steps in infection: adhesion, superoxide dismutase production and toxin production. Exposure of pure cultures of V. shiloi to crushed coral tissues strongly affected the expression of seven genes encoding pili, zona occludins toxin (Zot) and a superoxide dismutase. Analysis of eight V. shiloi strains isolated in the last decade shows a shift of the natural population from strains carrying all three genomic islands to strains carrying none of them. This shift occurred following appearance of resistance in the coral Oculina patagonica to infection by V. shiloi. The relevance of these findings to the bleaching disease caused by V. shiloi is discussed.  相似文献   

7.
Coral bleaching is the disruption of symbioses between coral animals and their photosynthetic microalgal endosymbionts (zooxanthellae). It has been suggested that large-scale bleaching episodes are linked to global warming. The data presented here demonstrate that Vibrio coralliilyticus is an etiological agent of bleaching of the coral Pocillopora damicornis. This bacterium was present at high levels in bleached P. damicornis but absent from healthy corals. The bacterium was isolated in pure culture, characterized microbiologically, and shown to cause bleaching when it was inoculated onto healthy corals at 25 degrees C. The pathogen was reisolated from the diseased tissues of the infected corals. The zooxanthella concentration in the bacterium-bleached corals was less than 12% of the zooxanthella concentration in healthy corals. When P. damicornis was infected with V. coralliilyticus at higher temperatures (27 and 29 degrees C), the corals lysed within 2 weeks, indicating that the seawater temperature is a critical environmental parameter in determining the outcome of infection. A large increase in the level of the extracellular protease activity of V. coralliilyticus occurred at the same temperature range (24 to 28 degrees C) as the transition from bleaching to lysis of the corals. We suggest that bleaching of P. damicornis results from an attack on the algae, whereas bacterium-induced lysis and death are promoted by bacterial extracellular proteases. The data presented here support the bacterial hypothesis of coral bleaching.  相似文献   

8.
The coral bleaching Vibrio shiloi LMG 19703T was characterized by means of Fluorescent Amplified Fragment Length Polymorphism (FAFLP), DNA-DNA hybridisation, mol% G+C content, fatty acids methyl ester (FAME) analysis and phenotypical tests. Numerical analysis of the FAFLP band patterns indicated that the type strain of V. shiloi in fact belongs to the species V. mediterranei. The type strains of both species shared 77% DNA similarity, as determined by DNA-DNA hybridisation experiments at stringent conditions. Moreover, V. shiloi and V. mediterranei showed almost identical fatty acid composition and phenotypical features. Collectively, the genotypic and phenotypic data presented in this study suggest that V. shiloi Kushmaro et al. 2001 should be considered a later synonym of V. mediterranei Pujalte and Garay 1986. The involvement of V. mediterranei in coral bleaching was unknown until now.  相似文献   

9.
Inoculation of the coral-bleaching bacterium Vibrio shiloi into seawater containing its host Oculina patagonica led to adhesion of the bacteria to the coral surface via a beta-D-galactose receptor, followed by penetration of the bacteria into the coral tissue. The internalized V. shiloi cells were observed inside the exodermal layer of the coral by electron microscopy and fluorescence microscopy using specific anti-V. shiloi antibodies to stain the intracellular bacteria. At 29 degrees C, 80% of the bacteria bound to the coral within 8 h. Penetration, measured by the viable count (gentamicin invasion assay) inside the coral tissue, was 5.6, 20.9, and 21.7% of the initial inoculum at 8, 12, and 24 h, respectively. The viable count in the coral tissue decreased to 5.3% at 48 h, and none could be detected at 72 h. Determination of V. shiloi total counts (using the anti-V. shiloi antibodies) in the coral tissue showed results similar to viable counts for the first 12 h of infection. After 12 h, however, the total count more than doubled from 12 to 24 h and continued to rise, reaching a value 6 times that of the initial inoculum at 72 h. Thus, the intracellular V. shiloi organisms were transformed into a form that could multiply inside the coral tissue but did not form colonies on agar medium. Internalization of the bacteria was accompanied by the production of high concentrations of V. shiloi toxin P activity in the coral tissue. Internalization and multiplication of V. shiloi are discussed in terms of the mechanism of bacterial bleaching of corals.  相似文献   

10.
Vibrio shiloi, the causative agent of bleaching of the coral Oculina patagonica in the Mediterranean Sea, is present in all bleached O. patagonica corals in the summer (25-30 degrees C), but can be not detected in the coral during the winter (16-20 degrees C). Furthermore, the pathogen can not survive in O. patagonica at temperatures below 20 degrees C. Using fluorescence in situ hybridization (FISH) with a V. shiloi-specific oligonucleotide probe, we found that the marine fireworm Hermodice caranculata is a winter reservoir for V. shiloi. Worms taken directly from the sea during the winter contained approximately 10(8) V. shiloi per worm by FISH analysis. However, colony-forming units (cfu) revealed only 4.1-18.3 x 10(4) V. shiloi per worm, indicating that approximately 99.9% of them were in the viable-but-not-culturable (VBNC) state. When worms were infected with V. shiloi, most of the bacteria adhered to the worm within 24 h and then penetrated into epidermal cells. By 48 h, less than 10(-4) of the intact V. shiloi in the worm gave rise to colonies, suggesting that they differentiated inside the worm into the VBNC state. When worms infected with V. shiloi were placed in aquaria containing O. patagonica, all of the corals showed small patches of bleached tissue in 7-10 days and total bleaching in 17 days. This is the first report of a reservoir and vector for a coral disease.  相似文献   

11.
Coral bleaching is the disruption of symbioses between coral animals and their photosynthetic microalgal endosymbionts (zooxanthellae). It has been suggested that large-scale bleaching episodes are linked to global warming. The data presented here demonstrate that Vibrio coralliilyticus is an etiological agent of bleaching of the coral Pocillopora damicornis. This bacterium was present at high levels in bleached P. damicornis but absent from healthy corals. The bacterium was isolated in pure culture, characterized microbiologically, and shown to cause bleaching when it was inoculated onto healthy corals at 25°C. The pathogen was reisolated from the diseased tissues of the infected corals. The zooxanthella concentration in the bacterium-bleached corals was less than 12% of the zooxanthella concentration in healthy corals. When P. damicornis was infected with V. coralliilyticus at higher temperatures (27 and 29°C), the corals lysed within 2 weeks, indicating that the seawater temperature is a critical environmental parameter in determining the outcome of infection. A large increase in the level of the extracellular protease activity of V. coralliilyticus occurred at the same temperature range (24 to 28°C) as the transition from bleaching to lysis of the corals. We suggest that bleaching of P. damicornis results from an attack on the algae, whereas bacterium-induced lysis and death are promoted by bacterial extracellular proteases. The data presented here support the bacterial hypothesis of coral bleaching.  相似文献   

12.
The change of Stylophora pistillata coral photosynthetic function (oxygen exchange and biomass of symbionts) under starvation and food enrichment was studied to understand the role of heterotrophy in nitrogen supplements of zooxanthellae. The starvation caused the decrease of frequency of zooxanthellae cells division in 7-10 times. The number of degraded algae cells increased in same proportion and, as a result, the density of zooxanthellae in corals decreased about two times during one-two weeks. Under starvation corals kept their photosynthetic capacity at the level of corals in situ by means of enhancing the zooxanthellae gross photosynthesis. The respiration rate of coral had tendency to increase and the dry mass of polyp tissue to decrease. Under artificial feeding which was following starvation the zooxanthellae density increased in 1.5-2 times, and particular food caused more intensive accumulation of zooxanthellae comparing to dissolved inorganic ammonium. The feeding regime did not affect dry mass of polyp tissue and chlorophyll content as well as respiration and gross productivity of the corals. The conclusion about high effectiveness of particular feeding for supplying symbiotic algae with nitrogen was made and trophic status of zooxanthellae in hospite was determined as unlimited by nitrogen.  相似文献   

13.
The bleaching of corals in response to increases in temperature has resulted in significant coral reef degradation in many tropical marine ecosystems. This bleaching has frequently been attributed to photoinhibition of photosynthetic electron transport and the consequent photodamage to photosystem II (PSII) and the production of damaging reactive oxygen species (ROS) in the zooxanthellae (Symbiodinium spp.). However, these events may be because of perturbations of other processes occurring within the zooxanthellae or the host cells, and consequently constitute only secondary responses to temperature increase. The processes involved with the onset of photoinhibition of electron transport, photodamage to PSII and pigment bleaching in coral zooxanthellae are reviewed. Consideration is given to how increases in temperature might lead to perturbations of metabolic processes in the zooxanthellae and/or their host cells, which could trigger events leading to bleaching. It is concluded that production of ROS by the thylakoid photosynthetic apparatus in the zooxanthellae plays a major role in the onset of bleaching resulting from photoinhibition of photosynthesis, although it is not clear which particular ROS are involved. It is suggested that hydrogen peroxide generated in the zooxanthellae may have a signalling role in triggering the mechanisms that result in expulsion of zooxanthellae from corals.  相似文献   

14.
Coral bleaching involves the loss of symbiotic dinoflagellates (zooxanthellae) from reef corals and other cnidarians and may be a stress response of the host, algae or both. To determine the role of zooxanthellae in the bleaching process, aposymbiotic sea anemones from Bermuda (Aiptasia pallida) were infected with symbionts from other sea anemones (Aiptasia pallida from Florida, Bartholomea annulata and Condylactis gigantea). The expulsion of algae was measured during 24-h incubations at 25, 32 and 34 degrees C. Photosynthetic rates of freshly isolated zooxanthellae were also measured at these temperatures. The C. gigantea (Cg) symbionts were expelled in higher numbers than the other algae at 32 degrees C. Photosynthesis by the Cg algae was completely inhibited at this temperature, in contrast to the other symbionts. At 34 degrees all of the symbionts had increased expulsion rates, and at this temperature only the symbionts from Florida A. pallida exhibited any photosynthesis. These results provide the first evidence that the differential release of symbionts from the same host species is related to decreased photosynthesis at elevated temperatures, and support other findings suggesting that zooxanthellae are directly affected by elevated temperatures during bleaching events.  相似文献   

15.
In a coral-algae symbiotic system, heat-dependent photoinhibition of photosystem II (PSII) leads to coral bleaching. When the reef-building coral Acropora digitifera was exposed to light, a moderate increase of temperature induced coral bleaching through photobleaching of algal pigments, but not through expulsion of symbiotic algae. Monitoring of PSII photoinhibition revealed that heat-dependent photoinhibition was ascribed to inhibition of the repair of photodamaged PSII, and heat susceptibility of the repair machinery varied among coral species. We conclude that the efficiency of the photosynthesis repair machinery determines the bleaching susceptibility of coral species under elevated seawater temperatures.  相似文献   

16.
卫星遥感珊瑚礁白化概述   总被引:1,自引:0,他引:1  
潘艳丽  唐丹玲 《生态学报》2009,29(9):5076-5080
珊瑚礁白化是由于珊瑚失去体内共生的虫黄藻或者共生的虫黄藻失去体内色素而导致五彩缤纷的珊瑚礁变白的现象,严重的白化可以带来珊瑚礁的死亡.国内外研究表明海水温度升高和珊瑚礁白化关系最为紧密.卫星遥感能够提供大范围、同步与连续的海洋数据,如海水表层温度和海色数据,从而能够及时监测和预测珊瑚礁的白化.基于AVHRR (Advanced Very High Resolution Radiometer),NOAA(National Oceanic and Atmospheric Administration,US)开发了全球监测珊瑚礁白化的方法,热点(HotSpot)和周热度(DHW)两种主要指数.目前,我国珊瑚礁白化现象的监测和研究明显滞后于国际动态,迫切需要发展和利用卫星遥感的方法监测南海珊瑚礁白化状况.  相似文献   

17.
Coral bleaching is a disease that threatens coral reefs throughout the world. The disease is correlated with higher-than-normal seawater temperatures. Data have been reported showing that bleaching of the coral Oculina patagonica during the summer in the Mediterranean Sea is the result of an infection with Vibrio shiloi. The summer temperatures induce the expression of virulence factors in the pathogen. We report here that V. shiloi produces an extracellular superoxide dismutase (SOD) at 30°C, but not at 16°C. An SOD mutant was avirulent. The mutant adhered to corals, penetrated into coral cells, multiplied intracellularly for a short time, and then died. These data support the hypothesis that SOD protects the intracellular V. shiloi from oxidative stress caused by the high concentration of oxygen produced by intracellular zooxanthellae photosynthesis. Received: 3 July 2002 / Accepted: 27 July 2002  相似文献   

18.
Recent reports of worldwide coral bleaching events leading to devastating coral mortality have caused alarm among scientists and resource managers. Differential survival of coral species through bleaching events has been widely documented. We suggest that among the possible factors contributing to survival of coral species during such events are endolithic algae harboured in their skeleton, providing an alternative source of energy. We studied the dynamics of photosynthetic pigment concentrations and biomass of endoliths in the skeleton of the encrusting coral Oculina patagonica throughout a bleaching event. During repeated summer bleaching events these endolithic algae receive increased photosynthetically active radiation, increase markedly in biomass, and produce increasing amounts of photoassimilates, which are translocated to the coral. Chlorophyll concentrations and biomass of endoliths were 4.6 +/- 1.57 and 1570 +/- 427 microg cm(-2) respectively, in skeletons of relatively healthy colonies (0-40% bleaching) but up to 14.8 +/- 2.5 and 4036 +/- 764 microg cm(-2) endolith chlorophyll and biomass respectively, in skeletons of bleached colonies (greater than 40% bleaching). The translocation dynamics of (14)C-labelled photoassimilates from the endoliths to bleached coral tissue showed significantly higher 14C activity of the endoliths harboured within the skeletons of bleached corals than that of the endoliths in non-bleached corals. This alternative source of energy may be vital for the survivorship of O. patagonica, allowing gradual recruitment of zooxanthellae and subsequent recovery during the following winter.  相似文献   

19.
The potential of corals to associate with more temperature-tolerant strains of algae (zooxanthellae, Symbiodinium) can have important implications for the future of coral reefs in an era of global climate change. In this study, the genetic identity and diversity of zooxanthellae was investigated at three reefs with contrasting histories of bleaching mortality, water temperature and shading, in the Republic of Palau (Micronesia). Single-stranded conformation polymorphism and sequence analysis of the ribosomal DNA internal transcribed spacer (ITS)1 region was used for genotyping. A chronically warm but partly shaded coral reef in a marine lake that is hydrographically well connected to the surrounding waters harboured only two single-stranded conformation polymorphism profiles (i.e. zooxanthella communities). It consisted only of Symbiodinium D in all 13 nonporitid species and two Porites species investigated, with the remaining five Porites harbouring C*. Despite the high temperature in this lake (> 0.5 degrees above ambient), this reef did not suffer coral mortality during the (1998) bleaching event, however, no bleaching-sensitive coral families and genera occur in the coral community. This setting contrasts strongly with two other reefs with generally lower temperatures, in which 10 and 12 zooxanthella communities with moderate to low proportions of clade D zooxanthellae were found. The data indicate that whole coral assemblages, when growing in elevated seawater temperatures and at reduced irradiance, can be composed of colonies associated with the more thermo-tolerant clade D zooxanthellae. Future increases in seawater temperature might, therefore, result in an increasing prevalence of Symbiodinium phylotype D in scleractinian corals, possibly associated with a loss of diversity in both zooxanthellae and corals.  相似文献   

20.
We compared induction of the viable-but-nonculturable (VBNC) state in two Vibrio spp. isolated from diseased corals by starving the cells and maintaining them in artificial seawater at 4 and 20 degrees C. In Vibrio tasmaniensis, isolated from a gorgonian octocoral growing in cool temperate water (7 to 17 degrees C), the VBNC state was not induced by incubation at 4 degrees C after 157 days. By contrast, Vibrio shiloi, isolated from a coral in warmer water (16 to 30 degrees C), was induced into the VBNC state by incubation at 4 degrees C after 126 days. This result is consistent with reports of low-temperature induction in several Vibrio spp. A large proportion of the V. tasmaniensis population became VBNC after incubation for 157 days at 20 degrees C, and V. shiloi became VBNC after incubation for 126 days at 20 degrees C. Resuscitation of V. shiloi cells from cultures at both temperatures was achieved by nutrient addition, suggesting that starvation plays a major role in inducing the VBNC state. Our results suggest that viable V. shiloi could successfully persist in the VBNC state in seawater for significant periods at the lower temperatures that may be experienced in winter conditions, which may have an effect on the seasonal incidence of coral bleaching. For both species, electron microscopy revealed that prolonged starvation resulted in transformation of the cells from rods to cocci, together with profuse blebbing, production of a polymer-like substance, and increased membrane roughness. V. shiloi cells developed an increased periplasmic space and membrane curling; these features were absent in V. tasmaniensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号