首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Cell-free lysates of human peripheral blood lymphocytes contained two casein kinase activities and two histone kinase activities, which could be separated by chromatography on DEAE-Sephadex. 2. Neither of the casein kinase activities were stimulated by cyclic AMP. The major activity was eluted from DEAE-Sephadex between 0.4 and 0.45M-KCl, had a molecular weight of approx. 130,000 (sucrose density gradients) and was stimulated by KCl (maximum 150mM). It also formed higher-molecular-weight aggregates when centrifuged in sucrose gradients containing 150mM-KCl. The minor activity was not retained by DEAE-Sephadex, had a molecular weight of approx. 50,000 and was not stimulated by KCl. 3. The major histone kinase activity was stimulated by cyclic AMP and was eluted from the DEAE-Sephadex column between 0.05 and 0.2M-KCl. The other activity was not stimulated by cyclic AMP and was insensitive to the rabbit muscle protein kinase inhibitor. 4. Evidence was obtained suggesting that the lymphocyte casein kinases were located primarily in the nuclei.  相似文献   

2.
Phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) from bovine tracheal smooth muscle extracts was isolated and its activity determined using two [32P]phosphorylated proteins as substrates, i.e. phosphorylated histone (H-P) and a phosphorylated muscle specific substrate protein (MS-P) for the tracheal smooth muscle protein kinase. The enzyme was purified by the use of DEAE-cellulose followed by a two stage chromatography on a histone-Sepharose affinity column. Elution from the affinity column resolved the phosphoprotein phosphatase into four activity fractions. While fractions expressed phosphatase activity against both tested substrates the relative amounts of either activity varied. The ratio of activity towards H-P to activity towards MS-P changed from 11.5 to 0.12. The characterization of four phosphoprotein phosphatase fractions was based on the differences found in the following parameters: substrate specificity; sensitivity to NaF; influences of nucleotides (ATP, 5'-AMP, cyclic AMP, cyclic GMP) and the requirement of Mn2+ for maximal activity. Mg2+, Ba2+ or Ca2+ could not substitute for Mn2+.  相似文献   

3.
This study examined the binding of both cyclic AMP and cyclic GMP to receptor proteins in particulate and soluble subfractions of renal cortical homogenates from the golden hamster. The binding of both nucleotides was compared to subsequent effects of both nucleotides on the phosphorylation of histone from identical fractions. Cyclic AMP binding and cyclic AMP-dependent protein kinase activity predominated in the cytosol, with some binding and enzyme activity also detected in particulate fractions. Cyclic GMP and cyclic GMP-dependent protein kinase activity could only be demonstrated in cytosolic fractions and represented only 20-30% of cyclic AMP-dependent activity in this fraction. Binding of both nucleotides was highly specific, however, cyclic AMP showed some interaction with cyclic GMP binding. Evidence suggesting that each nucleotide interacts with a specific protein kinase was as follows: both the binding activity of the cyclic nucleotides and their combined protein kinase activity show additivity; cyclic AMP and cyclic GMP binding activity could be separated on sucrose gradients; cyclic AMP and cyclic GMP protein kinase activity could be separated with Sephadex G-100 chromatography, after preincubation of homogenate supernatants with either cyclic AMP or cyclic GMP. The results demonstrate the presence of both cyclic AMP- and cyclic GMP-dependent protein kinase in renal cortex.  相似文献   

4.
Two protein phosphatases were isolated from rat liver nuclei. The enzymes, solubilized from crude chromatin by 1 M NaCl, were resolved by column chromatography on Sephadex G-150, DEAE-Sepharose and heparin-Sepharose. The phosphorylase phosphatase activity of one of the enzymes (inhibitor-sensitive phosphatase) was inhibited by heat-stable phosphatase inhibitor proteins and also by histone H1. This phosphatase had a molecular weight of approx. 35 000 both before and after 4 M urea treatment. Its activity was specific for the β-subunit of phosphorylase kinase. Pretreatment with 0.1 mM ATP inhibited the enzyme only about 10%, and it did not require divalent cations for activity. On the basis of these properties, this nuclear enzyme was identified as the catalytic subunit of phosphatase 1. The other phosphatase (polycation-stimulated phosphatase) was insensitive to inhibition by inhibitor 1, and it was stimulated 10-fold by low concentrations of histone H1 (A0.5 = 0.6 μM). This enzyme had a molecular weight of approx. 70 000 which was reduced to approx. 35 000 after treatment with 4 M urea. It dephosphorylated both the α- and β-subunits of phosphorylase kinase. The enzyme was inhibited more than 90% by preincubation with 0.1 mM ATP and did not require divalent cations for activity. On the basis of these properties, this nuclear enzyme was identified as phosphatase 2A.  相似文献   

5.
100 000 times g soluble extracts from interscapular brown adipose tissue catalyzed the transfer of the terminal phosphoryl group from GTP to histone. Maximal velocity was achieved only with both cyclic AMP and ATP present. The cyclic AMP dose-response curve was the same as for the ATP-utilizing enzyme, with maximum stimulation at 0.5 muM. ATP (1--100muM) increased the rate of histone phosphorylation with GTP as the radioactive substrate. Higher concentrations had a dilution effect similar to that of GTP on the ATP-utilizing enzyme. Similar effects were observed with ADP and AMP. The apparent Km values for histone were the same with both GTP and ATP as nucleotide substrates. The effects of pH, purified beef muscle kinase inhibitor and of NaCl were also the same. Maximum velocities of histone phosphorylation from ATP and those from GTP were almost the same in brown fat of all age groups testes, Separated on histone-Sepharose, the GTP-utilizing activity was absolutely dependent on the re-addition of the ATP-utilizing enzyme (a linear relationship with a slope of approx. 0.95). An extremely active nucleotide phosphotransferase activity was found in the same subcellular fraction. The rate of equilibration of the gamma-32-P between GTP and ATP could account for all the histone phosphorylation with [gamma-32-P] GTP. It is concluded that, in spite of the presence of nucleotide phosphotransferase and ATP-protein kinase activities, a direct transfer from GTP to a protein substrate cannot be excluded. Also, histone may not be the natural protein acceptor for GTP-linked phosphorylation.  相似文献   

6.
Under certain physiological conditions a change i n the phosphorylation of histones in mouse epidermis in vivo was observed. Thus a single local application of the tumor-promoting mitogen 12-O-tetradecanoylphorbol-13-acetate caused a long-lasting increase of histone H1 phosphorylation which paralleled stimulated cell proliferation. Injection of the antimitotic β-adrenergic agonist isoproterenol led to a temporatory decrease in the rate of phosphorylation of H1, H2A and H2b immediately after cyclic AMP accumulation. A complete protein phosphorylation system could be demonstrated in mouse epidermis homogenates. The following enzyme activities were partially purified and characterized: a cyclic AMP-dependnet histone kinase; a ‘casein kinase’ and an ‘unsopecific’ protein kinase; a histone-specific protein phosphatase; and two ‘unspecific’ phosphoprotein phosphatases. In addition, a stimulatory effect of cyclic GPM on histone phosphorylation was observed. The enzymes were found to be predominantly localized in the 105 000 × g supernatant, but a small proportion of protein kinase and phosphatase activity could be regularly demonstrated in cell nuclei.  相似文献   

7.
100 000 × g soluble extracts from interscapular brown adipose tissue catalyzed the transfer of the terminal phosphoryl group from GTP to histone. Maximal velocity was achieved only with both cyclic AMP and ATP present. The cyclic AMP dose-response curve was the same as for the ATP-utilizing enzyme, with maximum stimulation at 0.5 μM. ATP (1–100 μM) increased the rate of histone phosphorylation with GTP as the radioactive substrate. Higher concentrations had a dilution effect similar to that of GTP on the ATP-utilizing enzyme. Similar effects were observed with ADP and AMP. The apparent Km values for histone were the same with both GTP and ATP as nucleotide substrates. The effects of pH, purified beef muscle kinase inhibitor and of NaCl were also the same. Maximum velocities of histone phosphorylation from ATP and those from GTP were almost the same in brown fat of all age groups tested. Separated on histone-Sepharose, the GTP-utilizing activity was absolutely dependent on the re-addition of the ATP-utilizing enzyme (a linear relationship with a slope of approx. 0.95). An extremely active nucleotide phosphotransferase activity was found in the same subcellular fraction. The rate of equilibration of the γ-32 P between GTP and ATP could account for all the histone phosphorylation with [γ-32 P] GTP. It is concluded that, in spite of the presence of nucleotide phosphotransferase and ATP-protein kinase activities, a direct transfer from GTP to a protein substrate cannot be excluded. Also, histone may not be the natural protein acceptor for GTP-linked phosphorylation.  相似文献   

8.
A single cyclic AMP-dependent protein kinase (EC 2.7.1.37) has been isolated from human platelets by using DEAE-cellulose ion-exchange chromatography and Sephadex G-150 gel filtration. The molecular weight of the protein kinase was estimated to be 86 490. In the presence of cyclic AMP, the protein kinase could be dissociated into a catalytic subunit of molecular weight 50 000, and either one regulatory subunit of molecular weight 110 000 or two regulatory subunits of molecular weights 110 000 and 38 100, depending on the pH used. Recombination of either of the regulatory subunits with the catalytic subunit restored cyclic AMP-dependency in the catalytic subunit. The apparent Km for ATP in the presence of 10 muM Mg2+ was 4 muM (plus cyclic AMP) and 4.3 muM (minus cyclic AMP). The concentration of cyclic AMP needed for half-maximal stimulation of the protein kinase was 0.172 muM and apparent dissociation constants of 3.7 nM (absence of MgATP) and 0.18 muM (presence of MgATP) were exhibited by the "protein kinase-cyclic AMP complex". The enzyme required Mg2+ for maximum activity and showed a pH optimum of 6.2 with histone as substrate. In addition to four major endogenous platelet protein acceptors of apparent molecular weights 45 000, 28000, 18 500, and 11 100, the platelet protein kinase also phosphorylated the exogenous acceptor proteins thrombin, collagen and histone, all capable of inducing platelet aggregation. Prothrombin, a nonaggregating agent, was not phosphorylated.  相似文献   

9.
1. An adenosine 3':5'-cyclic monophosphate (cyclic AMP)-dependent protein kinase, located predominantly in the cytosol, was studied in canine prostate. 2. The enzyme exhibited cyclic AMP-binding activity, and could be isolated by chromatography on diethylaminoethyl cellulose. 3. The enzyme was maximally stimulated (fourfold) by 1mum-cyclic AMP, and half-maximal activation of the enzyme was observed in presence of 50nm-cyclic AMP. 4. Equilibrium studies at pH5.0 indicated the presence of one major class of binding site for cyclic AMP, with an association constant of approx. 10(8)m(-1). 5. Stimulation of the enzyme was also observed with the 3':5'-cyclic monophosphate derivatives of cytidine, inosine, guanosine and uridine as well as with dibutyryl cyclic AMP, but higher concentrations of these cyclic nucleotides were required to provide the same degree of activation as that seen with cyclic AMP. 6. Comparing alpha-casein, protamine and different histone subfractions as substrates, highest cyclic AMP stimulation was demonstrated with histones. 7. Although maximum velocity of the enzyme was enhanced approximately fivefold in presence of cyclic AMP, kinetic studies indicated that the apparent K(m) for histone (0.5mg/ml) remained the same whether determined in the presence or absence of the cyclic nucleotide. 8. In addition, cyclic AMP did not significantly change the apparent K(m) for ATP (1.2x10(-5)m). 9. The purified enzyme showed an absolute requirement for bivalent metal ion. Substitution of Mn(2+) for Mg(2+) decreased basal protein kinase activity as well as the stimulation noted with cyclic AMP. Similarly, the basal activity was lowered when Mg(2+) was replaced by Ca(2+) and cyclic AMP produced only little stimulation of the prostatic enzyme.  相似文献   

10.
We have examined protein phosphatase activities that are present during the cellular differentiation of Dictyostelium. Utilizing differential centrifugation, ion exchange, gel filtration, and concanavalin A affinity chromatography we found a number of distinct protein phosphatase activities. Three peaks of soluble Kemptide phosphatase activity and a very broad and heterogeneous soluble histone phosphatase activity were resolved by anion exchange chromatography. Histone phosphatase was associated with the particulate fraction, while Kemptide phosphatase was not. The protein phosphatase activities were able to dephosphorylate sites that had been phosphorylated by the cyclic AMP-dependent protein kinase. Therefore it is possible that their function in vivo may be to oppose the action of the cAMP-dependent protein kinase. In addition several paranitrophenyl phosphate phosphatase activities are shown to be largely separable from the protein phosphatases. An apparent heat-stable inhibitor of histone phosphatase is shown to be artifactual in that instead of interacting with the enzyme it acts by complexing with histone.  相似文献   

11.
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested.  相似文献   

12.
A cyclic AMP dependent protein kinase (EC 2.7.1.37) from sea urchin sperm as purified to near homogeneity and characterized. A 68-fold purification of the enzyme was obtained. This preparation had a specific activity of 389 000 units/mg protein with protamine as the substrate. On the basis of the purification required, it may be calculated that the protein kinase constitutes as much as 1.5% of the soluble protein in sperm. There appeared to be a single form of the enzyme in sea urchin sperm, based on the behavior of the enzyme during DEAE-cellulose and Sephadex G-200 column chromatography. Magnesium ion was required for enzyme activity. The rate of phosphorylation of protamine was stimulated 2.5-fold by an optimal concentration of 0.9 M NaCl. The Km for ATP (minus cyclic AMP) was 0.119 +/- 0.013 (S.D.) and 0.055 mM +/- 0.009 (S.D.) in the presence of cyclic AMP. The specificity of the enzyme toward protein acceptors, in decreasing order of phosphorylation, was found to be histone f1 protamine, histone f2b, histone f3 and histone f2a; casein and phosvitin were not phosphorylated. The holoenzyme was found to have an apparent molecular weight of 230 000 by Sephadex G-200 chromatography. In the presence of 5 - 10(-6) M cyclic AMP, the holoenzyme was dissociated on Sephadex G-200 to a regulatory subunit of molecular weight 165 000 and a catalytic subunit of Mr 73 000. The dissociation could also be demonstrated by disc gel electrophoresis in the presence and absence of cyclic AMP.  相似文献   

13.
Adenosine 3′:5′-monophosphate-dependent protein kinase and phosphoprotein phosphatases were solubilized by Triton X-100, from a particulate fraction of bovine cerebral cortex enriched in synaptic membranes, and partially purified. The properties of these partially purified enzymes were studied using two substrates, Protein I and Protein II, prepared from the synaptic membrane fraction, as well as the substrates protamine and histone. The results suggest that the phosphorylation of Protein I and Protein II, as well as protamine and histone, are catalyzed by a single species of cAMP-deperident protein kinase. Thus, a single peak of protein kinase activity was observed, upon DEAE-cellulose hromatography of the Triton X-100 extract of the synaptic membrane preparation, which catalyzed the phosphorylation of all four substrate proteins. Moreover, the activity of this partially purified protein kinase toward the various substrate proteins was altered in a parallel fashion, either when the protein kinase preparation was subjected to heat inactivation or pH inactivation, or when the enzyme was assayed in the presence of various concentrations of cyclic nucleotides or of a protein kinase modulator. The individual protein substrates acted as competitive inhibitors with respect to one another. Upon sucrose density gradient centrifugation, the protein kinase activity toward the various substrates sedimented as a single peak. Finally, the relative specific activities toward the various substrates did not change significantly during a 2000-fold purification of the enzyme. In contrast to these observations with protein kinase, two peaks of protein phosphatase activity, with markedly different specificities toward Protein I and Protein II, were found upon DEAE-cellulose and Bio-Gel P-200 column chromatography of the Triton X-100 extract of the synaptic membrane fractions. One peak catalyzed the dephosphorylation of Phosphoprotein I but not of Phosphoprotein II, whereas the other peak catalyzed the dephosphorylation of Phosphoprotein II but not of Phosphoprotein I. The dephosphorylation of Phosphoprotein I by Phosphoprotein I phosphatase was not affected by adenosine 3':5'-monophosphate, whereas the dephosphorylation of Phosphoprotein II by Phosphoprotein II phosphatase required the presence of this nucleotide. Moreover, the two phosphatases differed from one another with respect to Stokes' radius as well as sedimentation coefficient.  相似文献   

14.
Phosphoproteins of the Adrenal Chromaffin Granule Membrane   总被引:4,自引:1,他引:3  
A fraction of chromaffin granule membranes contained a number of substrates for endogenous protein kinase activity as well as endogenous phosphatase activity. The major 32P-labelled polypeptide of molecular weight 43,000 appeared to be the alpha-subunit of pyruvate dehydrogenase of residual mitochondria. Several polypeptides showed cyclic AMP stimulation of phosphorylation of which the major polypeptide of molecular weight 59,000 shows half-maximal phosphorylation with 0.49 microM cyclic AMP. The phosphorylation of several other polypeptides is inhibited at high cyclic AMP concentrations. From studies with immunoprecipitation and two-dimensional electrophoresis it was found that alpha- and beta-tubulin and actin were absent from the granule membranes. However 32P labelling of a proportion of the copies of dopamine-beta-hydroxylase was demonstrated. The majority of the substrates for endogenous protein kinase activity are probably on the cytoplasmic side of the granule membrane.  相似文献   

15.
Three protein kinases were distinguished in Trypanosoma gambiense extract. The enzymes preferred phosvitin, histone, and protamine as acceptor proteins, respectively. The amino acid residues of the acceptor proteins which were phosphorylated by these protein-kinase activities were serine and- to less extent- threonine. The protein kinase activities were neither affected by cyclic nucleotides nor by cyclic AMP receptors. The molecular weights of these protein kinases were determined to be greater than 200,000, 95000 and 37000, respectively. The activities of all three protein kinases were affected to varying degrees by nucleotides and nucleosides.  相似文献   

16.
Multiple protein kinase activities were found in the luminal segment of the renal proximal tubule cell plasma membrane (brush border membrane). Membranes were extracted with Lubrol, with no loss in activity, and the extract was chromatographed on diethylaminoethyl cellulose with a salt gradient. With protamine as substrate, activity eluted in two peaks, designated I and IIb, and was cyclic AMP independent. With histone VII-S, one peak, designated IIa, appeared, which eluted slightly ahead of IIb and was cyclic AMP dependent. The three activities eluted in their original patterns following rechromatography. Histone kinase activity in the combined IIa+b fraction was stimulated threefold by cyclic nucleotides (Ka = 0.013 and 0.94 μM for cyclic AMP and cyclic GMP, respectively) by increasing V. Cyclic AMP binding activity eluted with histone kinase activity. Rechromatography of IIa+b on diethylaminoethyl cellulose containing 1 μm cyclic AMP resulted in passage through the column of most of the histone kinase activity (IIa) prior to the salt gradient, but retention of kinase IIb, which again eluted in its original position. Characterization of the separated enzymes revealed that kinase I was highly specific for protamine and totally insensitive to cyclic AMP and a specific protein inhibitor of cyclic AMP-dependent kinases. Kinase IIa was relatively specific for histones and was completely inhibited by the protein inhibitor. Kinase IIb was nonspecific, catalyzing phosphorylation of protamine, casein, histones, and phosvitin in decreasing order of activity, and was insensitive to cyclic AMP and the protein inhibitor. Exposure of intact brush border membranes to elevated temperatures revealed that phosphorylation of intrinsic membrane proteins and protamine was thermolabile, whereas cyclic AMP-dependent histone kinase activity was relatively thermostable. These findings implicate cyclic AMP-independent protamine kinases in the cyclic AMP-independent autophosphorylation of the brush border membrane.  相似文献   

17.
A variety of effects of cyclic AMP on cellular and subcellular phenomena suggest that there may be other modes of action of cyclic AMP then activation of protein kinase. It is also known that developing embryos contain cyclic AMP and its related enzymes. In order to explore the role of cyclic AMP in embryogenesis, a survey of proteins capable of binding cyclic AMP in the embryonic supernatant of Drosophila melanogaster was carried out. As the result, two cyclic AMP-binding proteins were found and characterized. The one (L) is, as expected, associated with protein kinase and has a dissociation constant of about 10(-9) M. Its molecular weight of 21 000 daltons is extremely small when compared with similar proteins in other organisms. The other (H), whose function is yet to be found, has a molecular weight of about 200 000 daltons and has a dissociation constant of about 10-7 M. Some laxity in binding specificity of the latter protein among adenosine nucleotides was observed, but cyclic AMP is the strongest ligand among them.  相似文献   

18.
A phosphorylated regulatory subunit of cyclic AMP-dependent protein kinase (type II) was purified to homogeneity from inorganic [32P]phosphate-injected rats. A new method of measuring the phosphorylation reaction was developed. It was found that this regulatory subunit was phosphorylated in cells and comprised 60, 82 and 55% of the total regulatory subunit in brain, heart and liver cytosol fractions from rats, respectively. Dephosphorylation was stimuated by cyclic nucleotides. The Ka values for cyclic AMP and cyclic IMP were 0.30 and 1.0 microM, respectively. Purified phosphoprotein phosphatase could dephosphorylate the regulatory subunit and this reaction was also stimulated by cyclic nucleotides with similar Ka values. The inhibitors of phosphoprotein phosphatase, NaF and ZnCl2, protected against dephosphorylation unless ADP or cyclic AMP were present.  相似文献   

19.
A cyclic adenosine 3',5'-monophosphate-dependent histone kinase (ATP: protein phosphotransferase, EC 2.7.1.37) was isolated from pig brain. The enzyme has been purified 1140-fold; it is homogeneous on polyacrylamide gel electrophoresis and gel filtration. The estimated molecular weight of the enzyme is 120 000. Histone kinase dissociates into a catalytic subunit and a regulatory one (molecular weights 40 000 and 90 000, respectively). The catalytic subunit has been obtained in homogeneous state as evidenced by sodium dodecylsulphate-polyacrylamide gel electrophoresis. At all purification steps, enzymatic activity is stimulated 5-fold by cyclic AMP. An apparent Km value for cyclic AMP is about 3.3 - 10- minus 7 M. In the presence of cyclic AMP(5 - 10- minus 6 M), the Km value for ATP and F1 histone were 1.2 - 10- minus five and 3 - 10- minus 5 M, respectively. Optimum pH value for histone kinase is 6.5, its isoelectric point is situated at pH 4.6. The purified enzyme displays high specificity for the lysine-rich and moderately lysine-rich histones F1, F2a2 and F2b. Arginine-rich histones and other known protein substrates for cyclic AMP-dependent protein kinases (casein, Escherichia coli RNA polymerase, etc.) are extremely poor substrates for this enzyme.  相似文献   

20.
The adenosine 3',5'-monophosphate receptor proteins of HeLa cells have been characterized. Using the Millipore filter assay, in the presence of 5'AMP and a phosphodiesterase inhibitor, specific [3H]cyclic AMP binding was detected in cytosol and in a nuclear-free particulate fraction, but not in nuclei. Both preparations exhibited biphasic Scatchard plots. 8-Azido[32P]cyclic AMP was used as a photoaffinity probe to covalently link ligand with receptor proteins. Proteins were then separated on denaturing gels and analyzed by autoradiography. The cytosol exhibited four specific binding proteins, with molecular weights of 46 000, 50 000, 52 000 and approx. 120 000. The 50 000/52 000 doublet could not be interconverted by phosphorylation-dephosphorylation reactions. On DEAE-cellulose, the 50 000-dalton protein eluted with peak II cyclic AMP-dependent protein kinase. The other proteins eluted with Peak I and with a binding peak not associated with kinase activity. Only the 50 000 protein was precipitated by type II protein kinase antibody from bovine heart. In the particulate fraction, the 120 000 protein was not detectable, but 8-azido[32P]cyclic AMP treatment revealed the other three proteins, with a relative increase in the 50 000-dalton protein. The results suggest that HeLa cells have four binding proteins which can associate with catalytic subunit and that the Peak I enzyme is heterogeneous, consisting of several distinct regulatory subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号