首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To elucidate the influence of local motion of the polypeptide chain on the catalytic mechanism of an enzyme, we have measured (15)N relaxation data for Escherichia coli dihydrofolate reductase in three different complexes, representing different stages in the catalytic cycle of the enzyme. NMR relaxation data were analyzed by the model-free approach, corrected for rotational anisotropy, to provide insights into the backbone dynamics. There are significant differences in the backbone dynamics in the different complexes. Complexes in which the cofactor binding site is occluded by the Met20 loop display large amplitude motions on the picosecond/nanosecond time scale for residues in the Met20 loop, the adjacent betaF-betaG loop and for residues 67-69 in the adenosine binding loop. Formation of the closed Met20 loop conformation in the ternary complex with folate and NADP(+), results in attenuation of the motions in the Met20 loop and the betaF-betaG loop but leads to increased flexibility in the adenosine binding loop. New fluctuations on a microsecond/millisecond time scale are observed in the closed E:folate:NADP(+) complex in regions that form hydrogen bonds between the Met20 and the betaF-betaG loops. The data provide insights into the changes in backbone dynamics during the catalytic cycle and point to an important role of the Met20 and betaF-betaG loops in controlling access to the active site. The high flexibility of these loops in the occluded conformation is expected to promote tetrahydrofolate-assisted product release and facilitate binding of the nicotinamide ring to form the Michaelis complex. The backbone fluctuations in the Met20 loop become attenuated once it closes over the active site, thereby stabilizing the nicotinamide ring in a geometry conducive to hydride transfer. Finally, the relaxation data provide evidence for long-range motional coupling between the adenosine binding loop and distant regions of the protein.  相似文献   

2.
The conformational flexibility of the DNA double helix is of great interest because of its potential role in protein recognition, packaging into chromosomes, formation of photodefects, and interaction with drugs. Theory finds that DNA is very flexible; however, there is a scarcity of experimental results that examine intrinsic properties of the DNA bases for the inherent flexibility in solution. We have studied the dynamics of poly(dA).poly(dT) and (dA)20.(dT)20 in a 50 mM cacodylate, 0.1 M NaCl, pH 7 buffer by using the time-correlated picosecond fluorescence anisotropy of thymine selectively excited at 293 nm. For both nucleic acids, a large-amplitude biphasic decrease in the anisotropy is observed that has a very fast, large-amplitude component on the picosecond time scale and a slower, smaller-amplitude component on the nanosecond time scale. These modes are sensitive to sucrose concentration, and are greatly attenuated at 77% sucrose by volume. This observation suggests that motions of the bases make a significant contribution to the observed fluorescence depolarization (in the absence of sucrose). Measurements on the single-stranded systems poly(dT) and (dT)20 reveal a much smaller amplitude of the very fast depolarization mode. These observations are consistent with a mechanism that involves concerted motions in the interior of the double-stranded systems.  相似文献   

3.
By transferring the central curaremimetic beta hairpin of the snake toxin alpha into the scaffold of the scorpion charybdotoxin, a chimeric protein was constructed that reproduced the three-dimensional structure and partially reproduced the function of the parent beta hairpin, without perturbing the three-dimensional structure of the scaffold [1]. Picosecond to hour time scale motions of charybdotoxin and the engineered protein were observed, in order to evaluate the dynamic consequences of the six deletions and eight mutations differentiating the two molecules. The chimeric protein dynamics were also compared to that of toxin alpha, in order to examine the beta hairpin motions in both structural contexts. Thus, 13C R1, R1rho and 1H-->13C nOe were measured for all the CalphaHalpha and threonine CbetaHbeta vectors. As the proteins were not labeled, accordion techniques combined to coherence selection by pulsed field gradients and preservation of magnetization following equivalent pathways were used to considerably reduce the spectrometer time needed. On one hand, we observed that the chimeric protein and charybdotoxin are subjected to similar picosecond to nanosecond time scale motions except around the modified beta sheet region. The chimeric protein also exhibits an additional millisecond time scale motion on its whole sequence, and its beta structure is less stable on a minute to hour time scale. On the other hand, when the beta hairpin dynamics is compared in two different structural contexts, i.e. in the chimeric protein and the curaremimetic toxin alpha, the picosecond to nanosecond time scale motions are fairly conserved. However, the microsecond to millisecond time scale motions are different on most of the beta hairpin sequence, and the beta sheet seems more stable in toxin alpha than in the chimera. The slower microsecond to hour time scale motions seem to be extremely sensitive to the structural context, and thus poorly transferred from one protein to another.  相似文献   

4.
The N-terminal, matrix metalloproteinase (MMP)-inhibitory fragment of recombinant, human tissue inhibitor of metalloproteinases (TIMP-1) exhibits varied backbone dynamics and rigidity. Most striking is the presence of chemical exchange in the MMP-binding ridge reported to undergo conformational change upon MMP binding. Conformational exchange fluctuations in microseconds to milliseconds map to the sites of MMP-induced fit at residues Val29 through Leu34 of the AB loop and to the Ala65 and Cys70 "hinges" of the CD loop of TIMP-1. Slow chemical exchange is also present at the type I turn of the EF loop at the base of the MMP-binding ridge. These functional slow motions and other fast internal motions are evident from backbone (15)N spin relaxation at 500 and 750 MHz, whether interpreted by the model-free formalism with axial diffusion anisotropy or by the reduced spectral density approach. The conformational exchange is confirmed by its deviation from the trend between R(2) and the cross-correlation rate eta. The magnetic field-dependence indicates that the chemical exchange broadening in the AB and CD loops is fast on the time-scale of chemical shift differences. The conformational exchange rates for most of these exchanging residues, which can closely approach MMP, appear to be a few thousand to several thousand per second. The slow dynamics of the TIMP-1 AB loop contrast the picosecond to nanosecond dynamics reported in the longer TIMP-2 AB loop.  相似文献   

5.
The backbone dynamics of the J domain from polyomavirus T antigens have been investigated using 15N NMR relaxation and molecular dynamics simulation. Model-free relaxation analysis revealed picosecond to nanosecond motions in the N terminus, the I-II loop, the C-terminal end of helix II through the HPD loop to the beginning of helix III, and the C-terminal end of helix III to the C terminus. The backbone dynamics of the HPD loop and termini are dominated by motions with moderately large amplitudes and correlation times of the order of a nanosecond or longer. Conformational exchange on the microsecond to millisecond timescale was identified in the HPD loop, the N and C termini, and the I-II loop. A 9.7ns MD trajectory manifested concerted swings of the HPD loop. Transitions between major and minor conformations of the HPD loop featured distinct patterns of change in backbone dihedral angles and hydrogen bonds. Fraying of the C-terminal end of helix II and the N-terminal end of helix III correlated with displacements of the HPD loop. Correlation of crankshaft motions of Gly46 and Gly47 with the collective motions of the HPD loop suggested an important role of the two glycine residues in the mobility of the loop. Fluctuations of the HPD loop correlated with relative reorientation of side-chains of Lys35 and Asp44 that interact with Hsc70.  相似文献   

6.
MP Pond  A Majumdar  JT Lecomte 《Biochemistry》2012,51(29):5733-5747
The cyanobacterium Synechococcus sp. PCC 7002 uses a hemoglobin of the truncated lineage (GlbN) in the detoxification of reactive species generated in the assimilation of nitrate. In view of a sensing or enzymatic role, several states of GlbN are of interest with respect to its structure-activity relationship. Nuclear magnetic resonance spectroscopy was applied to compare the structure and backbone dynamics of six GlbN forms differing in their oxidation state [Fe(II) or Fe(III)], distal ligand to the iron (histidine, carbon monoxide, or cyanide), or heme post-translational modification (b heme or covalently attached heme). Structural properties were assessed with pseudocontact shift calculations. (15)N relaxation data were analyzed by reduced spectral density mapping (picosecond to nanosecond motions) and by inspection of elevated R(2) values (microsecond to millisecond motions). On the picosecond to nanosecond time scale, GlbN exhibited little flexibility and was unresponsive to the differences among the various forms. Regions of slightly higher mobility were the CE turn, the EF loop, and the H-H' kink. In contrast, fluctuations on the microsecond to millisecond time scale depended on the form. Cyanide binding to the ferric state did not enhance motions, whereas reduction to the ferrous bis-histidine state resulted in elevated R(2) values for several amides. This response was attributed, at least in part, to a weakening of the distal histidine coordination. Carbon monoxide binding quenched some of these fluctuations. The results emphasized the role of the distal ligand in dictating backbone flexibility and illustrated the multiple ways in which motions are controlled by the hemoglobin fold.  相似文献   

7.
Enhanced resolution of rapid and complex anisotropy decays was obtained by measurement and analysis of data from progressively quenched samples. Collisional quenching by acrylamide was used to vary the mean decay time of indole or of the tryptophan fluorescence from melittin. Anisotropy decays were obtained from the frequency-response of the polarized emission at frequencies from 4 to 2,000 MHz. Quenching increases the fraction of the total emission, which occurs on the subnanosecond timescale, and thereby provides increased information on picosecond rotational motions or local motions in proteins. For monoexponential subnanosecond anisotropy decays, enhanced resolution is obtained by measurement of the most highly quenched samples. For complex anisotropy decays, such as those due to both local motions and overall protein rotational diffusion, superior resolution is obtained by simultaneous analysis of data from quenched and unquenched samples. We demonstrate that measurement of quenched samples greatly reduces the uncertainty of the 50-ps correlation time of indole in water at 20 degrees C, and allows resolution of the anisotropic rotation of indole with correlation times of 140 and 720 ps. The method was applied to melittin in the monomeric and tetrameric forms. With increased quenching, the anisotropy data showed decreasing contributions from overall protein rotation and increased contribution from picosecond tryptophan motions. The tryptophan residues in both the monomeric and the tetrameric forms of melittin displayed substantial local motions with correlation times near 0.16 and 0.06 ns, respectively. The amplitude of the local motion is twofold less in the tetramer. These highly resolved anisotropy decays should be valuable for comparison with molecular dynamics simulations of melittin.  相似文献   

8.
The conformational flexibility of a human immunoglobulin κIV light-chain variable domain, LEN, which can undergo conversion to amyloid under destabilizing conditions, was investigated at physiological and acidic pH on a residue-specific basis by multidimensional solution-state nuclear magnetic resonance (NMR) methods. Measurements of backbone chemical shifts and amide (15)N longitudinal and transverse spin relaxation rates and steady-state nuclear Overhauser enhancements indicate that, on the whole, LEN retains its native three-dimensional fold and dimeric state at pH 2 and that the protein backbone exhibits limited fast motions on the picosecond to nanosecond time scale. On the other hand, (15)N Carr--Purcell--Meiboom--Gill (CPMG) relaxation dispersion NMR data show that LEN experiences considerable slower, millisecond time scale dynamics, confined primarily to three contiguous segments of about 5-20 residues and encompassing the N-terminal β-strand and complementarity determining loop regions 2 and 3 in the vicinity of the dimer interface. Quantitative analysis of the CPMG relaxation dispersion data reveals that at physiological pH these slow backbone motions are associated with relatively low excited-state protein conformer populations, in the ~2-4% range. Upon acidification, the minor conformer populations increase significantly, to ~10-15%, with most residues involved in stabilizing interactions across the dimer interface displaying increased flexibility. These findings provide molecular-level insights about partial protein unfolding at low pH and point to the LEN dimer dissociation, initiated by increased conformational flexibility in several well-defined regions, as being one of the important early events leading to amyloid assembly.  相似文献   

9.
Backbone dynamics of mouse major urinary protein I (MUP-I) was studied by (15)N NMR relaxation. Data were collected at multiple temperatures for a complex of MUP-I with its natural pheromonal ligand, 2- sec -4,5-dihydrothiazole, and for the free protein. The measured relaxation rates were analyzed using the reduced spectral density mapping. Graphical analysis of the spectral density values provided an unbiased qualitative picture of the internal motions. Varying temperature greatly increased the range of analyzed spectral density values and therefore improved reliability of the analysis. Quantitative parameters describing the dynamics on picosecond to nanosecond time scale were obtained using a novel method of simultaneous data fitting at multiple temperatures. Both methods showed that the backbone flexibility on the fast time scale is slightly increased upon pheromone binding, in accordance with the previously reported results. Zero-frequency spectral density values revealed conformational changes on the microsecond to millisecond time scale. Measurements at different temperatures allowed to monitor temperature dependence of the motional parameters.  相似文献   

10.
NMR analysis of four recombinant jerdostatin molecules was assessed to define the structural basis of two naturally occurring gain-of-function events: C-terminal dipeptide processing and mutation of the active residue K21 to arginine. Removal of the highly mobile and a bulky C-terminal dipeptide produced pronounced chemical shift changes in the sequentially unconnected but spatially nearby α(1)β(1) inhibitory loop. Analysis of chemical shift divergence and (15)N backbone relaxation dynamics indicated differences in motions in the picosecond to nanosecond time scale, and the higher T(2) rate of S25, S26, and H27 of rJerK21 point to a slowdown in the microsecond to millisecond motions of these residues when compared with rJerR21. The evidence presented in this article converges on the hypothesis that dynamic differences between the α(1)β(1) recognition loops of rJerR21 and rJerK21 may influence the thermodynamics of their receptor recognition and binding. A decrease in the μs-ms time scale may impair the binding affinity by reducing the rate of possible conformations that the rJerK21 can adopt in this time scale.  相似文献   

11.
This study presents a site-resolved experimental view of backbone C(alpha)H and NH internal motions in the 56-residue immunoglobulin-binding domain of streptococcal protein G, GB1. Using (13)C(alpha)H and (15)NH NMR relaxation data [T(1), T(2), and NOE] acquired at three resonance frequencies ((1)H frequencies of 500, 600, and 800 MHz), spectral density functions were calculated as F(omega) = 2omegaJ(omega) to provide a model-independent way to visualize and analyze internal motional correlation time distributions for backbone groups in GB1. Line broadening in F(omega) curves indicates the presence of nanosecond time scale internal motions (0.8 to 5 nsec) for all C(alpha)H and NH groups. Deconvolution of F(omega) curves effectively separates overall tumbling and internal motional correlation time distributions to yield more accurate order parameters than determined by using standard model free approaches. Compared to NH groups, C(alpha)H internal motions are more broadly distributed on the nanosecond time scale, and larger C(alpha)H order parameters are related to correlated bond rotations for C(alpha)H fluctuations. Motional parameters for NH groups are more structurally correlated, with NH order parameters, for example, being larger for residues in more structured regions of beta-sheet and helix and generally smaller for residues in the loop and turns. This is most likely related to the observation that NH order parameters are correlated to hydrogen bonding. This study contributes to the general understanding of protein dynamics and exemplifies an alternative and easier way to analyze NMR relaxation data.  相似文献   

12.
The backbone dynamics in the native state of apocytochrome b5 were studied using 15N nuclear magnetic spin relaxation measurements. The field (11.7 and 14.1 T) and temperature (10-25 degrees C) dependence of the relaxation parameters (R1, R2, and R1rho) and the 1H-15N NOE established that the protein undergoes multiple time scale internal motions related to the secondary structure. The relaxation data were analyzed with the reduced spectral density mapping approach and within the extended model-free framework. The apoprotein was confirmed to contain a disordered heme-binding loop of approximately 30 residues with dynamics on the sub-nanosecond time scale (0.6 < S2 < 0.7, 100 ps < taue < 500 ps). This loop is attached to a structured hydrophobic core, rigid on the picosecond time scale (S2 > 0.75, taue < 50 ps). The inability to fit the data for several residues with the model-free protocol revealed the presence of correlated motion. An exchange contribution was detected in the transverse relaxation rate (R2) of all residues. The differential temperature response of R2 along the backbone supported slower exchange rates for residues in the loop (tauex > 300 micros) than for the folded polypeptide chain (tauex < 150 micros). The distribution of the reduced spectral densities at the 1H and 15N frequencies followed the dynamic trend and predicted the slowing of the internal motions at 10 degrees C. Comparison of the dynamics with those of the holoprotein [Dangi, B., Sarma, S., Yan, C., Banville, D. L., and Guiles, R. D. (1998) Biochemistry 37, 8289-8302] demonstrated that binding of the heme alters the time scale of motions both in the heme-binding loop and in the structured hydrophobic core.  相似文献   

13.
Eotaxin is a member of the chemokine family of about 40 proteins that induce cell migration. Eotaxin binds the CC chemokine receptor CCR3 that is highly expressed by eosinophils, and it is considered important in the pathology of chronic respiratory disorders such as asthma. The high resolution structure of eotaxin is known. The 74 amino acid protein has two disulfide bridges and shows a typical chemokine fold comprised of a core of three antiparallel beta-strands and an overlying alpha-helix. In this paper, we report the backbone dynamics of eotaxin determined through 15N-T1, T2, and [1H]-15N nuclear Overhauser effect heteronuclear multidimensional NMR experiments. This is the first extensive study of the dynamics of a chemokine derived from 600, 500, and 300 MHz NMR field strengths. From the T1, T2, and NOE relaxation data, parameters that describe the internal motions of eotaxin were derived using the Lipari-Szabo model free analysis. The most ordered regions of the protein correspond to the known secondary structure elements. However, surrounding the core, the regions known to be functionally important in chemokines show a range of motions on varying timescales. These include extensive subnanosecond to picosecond motions in the N-terminus, C-terminus, and the N-loop succeeding the disulfides. Analysis of rotational diffusion anisotropy of eotaxin and chemical exchange terms at multiple fields also allowed the confident identification of slow conformational exchange through the "30s" loop, disulfides, and adjacent residues. In addition, we show that these motions may be attenuated in the dimeric form of a synthetic eotaxin. The structure and dynamical basis for eotaxin receptor binding is discussed in light of the dynamics data.  相似文献   

14.
The technique of frequency-domain fluorometry has been extended to 2000 MHz using the harmonic content of a picosecond laser source and a microchannel plate photomultiplier tube. This new instrument was used to resolve complex subnanosecond intensity and anisotropy decays of the tyrosyl emission of oxytocin. The intensity decay was found to contain at least three exponential components, 80, 359 and 927 ps. The anisotropy analysis revealed a 29 ps torsional motion of the tyrosine residue as well as a 454 ps overall rotational correlation time. The time resolution of this method should permit the comparison of experimental results with theoretical models for motions of proteins.  相似文献   

15.
Walsh ST  Lee AL  DeGrado WF  Wand AJ 《Biochemistry》2001,40(32):9560-9569
Understanding how the amino acid sequence of a polypeptide chain specifies a unique, functional three-dimensional structure remains an important goal, especially in the context of the emerging discipline of de novo protein design. Alpha3D is a single chain protein of 73 amino acids resulting from a de novo design effort. Previous solution nuclear magnetic resonance studies of alpha3D confirm that the protein adopts the designed structure of a three-helix bundle. Furthermore, alpha3D has been previously shown to possess all of the major thermodynamic and structural characteristics of natural proteins, though it shares no sequence homology to any protein sequence in the database. In this work, the backbone and side-chain dynamics of alpha3D were investigated using 15N, 13C, and 2H nuclear magnetic resonance relaxation methods with the aim of assessing the character of the internal motions of this native-like protein of de novo design. At the backbone level, both 15N and 13C(alpha) relaxation studies indicate highly restrictive motion on the picosecond to nanosecond time scale in the alpha-helical regions of alpha3D, with increasing mobility at the ends of the alpha-helices and in the two loop regions. This is largely consistent with what is seen in proteins of natural origin. Overall, the view provided by both 2H and 13C methyl relaxation methods suggest that the side chains of alpha3D are more dynamic compared to natural proteins. Regions of relative flexibility bound clusters of rigid methyl-bearing side-chain groups that are interspersed with aromatic and beta-branched amino acids. The time scale of motions associated with methyl-bearing side chains of alpha3D are significantly longer than that seen in natural proteins. These results indicate that the strategies underlying the design of alpha3D have largely, but not completely, captured both the structural and dynamic character of natural proteins.  相似文献   

16.
Zhou H  Shatz W  Purdy MM  Fera N  Dahlquist FW  Reich NO 《Biochemistry》2007,46(24):7261-7268
The bacterial DNA cytosine methyltransferase M.HhaI sequence-specifically modifies DNA in an S-adenosylmethionine dependent reaction. The enzyme stabilizes the target cytosine (GCGC) into an extrahelical position, with a concomitant large movement of an active site loop involving residues 80-99. We used multidimensional, transverse relaxation-optimized NMR experiments to assign nearly 80% of all residues in the cofactor-bound enzyme form, providing a basis for detailed structural and dynamical characterization. We examined details of the previously unknown effects of the cofactor binding with M.HhaI in solution. Addition of the cofactor results in numerous structural changes throughout the protein, including those decorating the cofactor binding site, and distal residues more than 30 A away. The active site loop is involved in motions both on a picosecond to nanosecond time scale and on a microsecond to millisecond time scale and is not significantly affected by cofactor binding except for a few N-terminal residues. The cofactor also affects residues near the DNA binding cleft, suggesting a role for the cofactor in regulating DNA interactions. The allosteric properties we observed appear to be closely related to the significant amount of dynamics and dynamical changes in response to ligand binding detected in the protein.  相似文献   

17.
NMR solution structure and backbone dynamics of the CC chemokine eotaxin-3.   总被引:1,自引:0,他引:1  
J Ye  K L Mayer  M R Mayer  M J Stone 《Biochemistry》2001,40(26):7820-7831
Eotaxin-3 is one of three related chemokines that specifically activate chemokine receptor CCR3. We report the 3D structure and backbone dynamics of eotaxin-3 determined by NMR spectroscopy. Eotaxin-3 is monomeric under the conditions in this study and consists of an unstructured N-terminus before the first two conserved cysteine residues, an irregularly structured N-loop following the second conserved cysteine, a single turn of 3(10)-helix, a three-stranded antiparallel beta-sheet, an alpha-helix, and an unstructured C-terminal tail. As in other chemokines, the alpha-helix packs against one face of the beta-sheet. The average backbone and heavy atom rmsd values of the 20 structures (residues 9-65) are 0.44 and 1.01 A, respectively. A comparison between the structures of eotaxin-3 and related chemokines suggests that the electrostatic potential in the vicinity of a surface groove and the structure of the beta2-beta3 turn may be important for maintaining receptor specificity. The backbone dynamics of eotaxin-3 were determined from 15N NMR relaxation data using the extended model free dynamics formalism. Large amplitude motions on the picosecond to nanosecond time scale were observed in both termini and in some residues in the N-loop, the beta1-beta2 turn, and the beta3 strand; the location of these residues suggests a possible role for dynamics in receptor binding and activation. In contrast to eotaxin, eotaxin-3 exhibits no substantial mobility on the microsecond to millisecond time scale.  相似文献   

18.
The 3D structure of methanogen chromosomal protein 1 (MC1), determined with heteronuclear NMR methods, agrees with its function in terms of the shape and nature of the binding surface, whereas the 3D structure determined with homonuclear NMR does not. The structure features five loops, which show a large distribution in the ensemble of 3D structures. Evidence for the fact that this distribution signifies internal mobility on the nanosecond time scale was provided by using (15)N-relaxation and molecular dynamics simulations. Structural variations of the arm (11 residues) induced large shape anisotropy variations on the nanosecond time scale that ruled out the use of the model-free formalism to analyze the relaxation data. The backbone dynamics analysis of MC1 was achieved by comparison with 20 ns molecular dynamics trajectories. Two β-bulges showed that hydrogen bond formation correlated with ? and ψ dihedral angle transitions. These jumps were observed on the nanosecond time scale, in agreement with a large decrease in (15)N-NOE for Gly17 and Ile89. One water molecule bridging NH(Glu87) and CO(Val57) through hydrogen bonding contributed to these dynamics. Nanosecond slow motions observed in loops LP3 (35-42) and LP5 (67-77) reflected the lack of stable hydrogen bonds, whereas the other loops, LP1 (10-14), LP2 (22-24), and LP4 (50-53), were stabilized by several hydrogen bonds. Dynamics are often directly related to function. Our data strongly suggest that residues belonging to the flexible regions of MC1 could be involved in the interaction with DNA.  相似文献   

19.
A significant determinant for the broad substrate specificity of the metallo-beta-lactamases from Bacteroides fragilis and other similar organisms is the presence of a plastic substrate binding site that is nevertheless capable of tight substrate binding in the Michaelis complex. To achieve these two competing ends, the molecule apparently employs a flexible flap that closes over the active site in the presence of substrate. These characteristics imply that dynamic changes are an important component of the mechanism of action of these enzymes. The backbone and tryptophan side chain dynamics of the metallo-beta-lactamase from B. fragilis have been examined using (15)N NMR relaxation measurements. Two states of the protein were examined, in the presence and absence of a tight-binding inhibitor. Relaxation measurements were analyzed by the model-free method. Overall, the metallo-beta-lactamase molecule is rigid and shows little flexibility except in loops. The flexibility of the loop that covers the active site is not unusually great as compared to the other loops of the protein. Local motion on a picosecond time scale was found to be very similar throughout the protein in the presence and absence of the inhibitor, but a significant difference was observed in the motions on a nanosecond time scale (tau(e)). Large-amplitude motions with a time constant of about 1.3 ns were observed for the flexible flap region (residues 45-55) in the absence of the inhibitor. These motions were completely damped out in the presence of the inhibitor. In addition, the motion of a tryptophan side chain at the tip of the beta-hairpin of the flap shows a very significant difference in motion on the ps time scale. These results indicate that the motions of the polypeptide chain in the flap region can be invoked to explain both the wide substrate specificity (the free form has considerable amplitude of motion in this region) and the catalytic efficiency of the metallo-beta-lactamase (the motions are damped out when the inhibitor and by implication a substrate binds in the active site).  相似文献   

20.
CaVP (calcium vector protein) is a Ca(2+) sensor of the EF-hand protein family which is highly abundant in the muscle of Amphioxus. Its three-dimensional structure is not known, but according to the sequence analysis, the protein is composed of two domains, each containing a pair of EF-hand motifs. We determined recently the solution structure of the C-terminal domain (Trp81-Ser161) and characterized the large conformational and dynamic changes induced by Ca(2+) binding. In contrast, the N-terminal domain (Ala1-Asp86) has lost the capacity to bind the metal ion due to critical mutations and insertions in the two calcium loops. In this paper, we report the solution structure of the N-terminal domain and its backbone dynamics based on NMR spectroscopy, nuclear relaxation, and molecular modeling. The well-resolved three-dimensional structure is typical of a pair of EF-hand motifs, joined together by a short antiparallel beta-sheet. The tertiary arrangement of the two EF-hands results in a closed-type conformation, with near-antiparallel alpha-helices, similar to other EF-hand pairs in the absence of calcium ions. To characterize the internal dynamics of the protein, we measured the (15)N nuclear relaxation rates and the heteronuclear NOE effect in (15)N-labeled N-CaVP at a magnetic field of 11.74 T and 298 K. The domain is mainly monomeric in solution and undergoes an isotropic Brownian rotational diffusion with a correlation time of 7.1 ns, in good agreement with the fluorescence anisotropy decay measurements. Data analysis using a model-free procedure showed that the amide backbone groups in the alpha-helices and beta-strands undergo highly restricted movements on a picosecond to nanosecond time scale. The amide groups in Ca(2+) binding loops and in the linker fragment also display rapid fluctuations with slightly increased amplitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号