首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin-Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin-Crk complex in the collagen-induced cell motility.  相似文献   

2.
Two cytotoxic proteins, bovine pancreatic ribonuclease A (RNase A), and a restriction endonuclease from Haemophilus parainfluenzae (HpaI), were produced using a novel semisynthetic approach that utilizes a protein splicing element, an intein, to generate a reactive thioester at the C-terminus of a recombinant protein. Nucleophilic attack on this thioester by the N-terminal cysteine of a synthetic peptide ultimately leads to the ligation of the two reactants through a native peptide bond. This strategy was used to produce RNase A and HpaI by isolating inactive truncated forms of these proteins, the first 109 and 223 amino acids of RNase A and HpaI, respectively, as fusion proteins consisting of the target protein, an intein, and a chitin binding domain. Thiol-induced cleavage of the precursor led to the liberation of the target protein with a C-terminal thioester-tag. Addition of synthetic peptides representing the amino acids missing from the truncated forms led to the generation of full-length products that displayed catalytic activity indicative of the wild-type enzymes. The turnover numbers and Km for ligated and renatured RNase A were 8.2 s(-1) and 1.5 mM, in good agreement with reported values of 8.3 s(-1) and 1.2 mM (Hodges & Merrifield, 1975). Ligated HpaI had a specific activity of 0.5-1.5 x 10(6) U/mg, which compared favorably with the expected value of 1-2 x 10(6) U/mg (J. Benner, unpubl. obs.). Besides assisting in the production of cytotoxic proteins, this technique could allow the easy insertion of unnatural amino acids into a protein sequence.  相似文献   

3.
A prominent target of monoclonal antibodies as targeted therapies for cancer is the epidermal growth factor receptor, which is overexpressed on the surface of various cancer cell types. Its natural binder, the epidermal growth factor (EGF), is a 53 amino acid polypeptide. Anticancer synthetic targeted immune system engagers (ISErs) comprising two ‘binder’ peptides, which are attached to a scaffold conveying immune stimulating ‘effector’ properties, via monodisperse polyethylene glycol chains. So far, preparation of ISErs has been limited to the use of small peptides (8–20 amino acids) as binding functionalities, and they have been entirely synthesized by solid phase peptide synthesis. Here, we describe a synthetic and a semisynthetic approach for the preparation of an ISEr bearing two murine EGF molecules as binding entities (ISEr‐EGF2). EGF was either synthesized in segments by solid phase peptide synthesis or expressed recombinantly and ligated to the scaffold by native chemical ligation. We report the successful generation of synthetic and semisynthetic ISEr‐EGF2 as well as several challenges encountered during the synthesis and ligations. We demonstrate the application of native chemical ligation for the design of larger ISEr constructs, facilitating new objectives for the coupling of small binder peptides and larger proteins to multivalent ISEr scaffolds. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The cDNA encoding a phosphorylation-dependent inhibitory protein of protein phosphatase-1 (PP1) was isolated from a porcine aorta library. The coding region represented the complete amino acid sequence of this protein comprised of a novel 147-residue polypeptide, which we termed CPI17, a 17-kDa PKC-potentiated inhibitory protein of PP1. As well as the native CPI17 from porcine aorta, the recombinant protein completely suppressed the PP1 activity (IC50=0.18 nM) by the stoichiometric thiophosphorylation. The CPI17 mRNA is expressed in smooth muscle tissues such as aorta and bladder, whereas little expression was observed in heart, skeletal muscle, and non-muscle tissues. These results suggest a specific regulatory mechanism of the PP1 activity through CPI17 in smooth muscle.  相似文献   

5.
Reassessing the role of phosphocaveolin-1 in cell adhesion and migration   总被引:1,自引:0,他引:1  
Although phosphorylation on tyrosine 14 was identified early in the discovery of caveolin-1, the functional significance of this modification still remains elusive. Recent evidence points to a role of caveolin-1 tyrosine 14 phosphorylation in cell adhesion and migration. These results are based on a variety of tools, including a widely used mouse monoclonal anti-phosphocaveolin-1 antibody, which labels, in cultured cells, a protein localized at or near focal adhesions. We here report results from three independent laboratories, showing that this antibody recognizes phosphocaveolin-1 amongst other proteins in immunoblot analyses and that the signal obtained with this antibody in immunostaining experiments is in part due to labeling of paxillin. Published data need to be interpreted keeping in mind that images of phosphocaveolin-1 cellular localization obtained using this antibody are not valid. We re-evaluate the current knowledge about the role of caveolin-1 in cell adhesion and migration in view of this new information.  相似文献   

6.
The Piezo channel is a versatile mechanosensitive cation channel that mediates tactile, vascular development, and proprioception. GsMTx4 is the only reported inhibitor specifically targeting Piezo channels. Although the sequence of GsMTx4 is reported, the crystal structure of GsMTx4 is still unknown. Here, we achieved the two‐segment synthesis of GsMTx4 and its enantiomer, enGsMTx4, through hydrazide based Native Chemical Ligation, and analyzed the crystal structure of GsMTx4 through the racemic crystallization technology. By analyzing the structure, we found that there is a hydrophobic patch surrounded by aromatic residues and charged residues.  相似文献   

7.
Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three‐dimensional structure domain was constructed from three segments murine PrP (mPrP)(90–177), mPrP(178–212), and mPrP(213–230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C‐terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
An unnatural amino acid was synthesized to incorporate a quinone methide-generating activity-based probe for protein tyrosine phosphatases (PTPs) and then integrated into a PTP1B-specific substrate. The resulting probe led to preferential labeling of PTP1B in cell lysates in the presence of PTP4A3.  相似文献   

9.
A cell-free protein synthesis system is a powerful tool with which unnatural amino acids can be introduced into polypeptide chains. Here, the authors describe unnatural amino acid probing in a wheat germ cell-free translation system as a method for detecting the structural changes that occur in a cofactor binding protein on a conversion of the protein from an apo-form to a holo-form. The authors selected the FMN-binding protein from Desulfovibrio vulgaris as a model protein. The apo-form of the protein was synthesized efficiently in the absence of FMN. The purified apo-form could be correctly converted to the holo-form. Thus, the system could synthesize the active apo-form. Gel filtration chromatography, analytical ultracentrifugation, and circular dichroism-spectra studies suggested that the FMN-binding site of the apo-form is open as compared with the holo-form. To confirm this idea, the unnatural amino acid probing was performed by incorporating 3-azido-L-tyrosine at the Tyr35 residue in the FMN-binding site. The authors optimized three steps in their system. The introduced 3-azido-L-tyrosine residue was subjected to specific chemical modification by a fluorescein-triarylphosphine derivative. The initial velocity of the apo-form reaction was 20 fold faster than that of the holo-form, demonstrating that the Tyr35 residue in the apo-form is open to solvent.  相似文献   

10.
非天然氨基酸在医药、农药、材料等领域得到广泛应用,其绿色、高效合成越来越受到关注.近年来,随着合成生物学的快速发展,微生物细胞工厂为非天然氨基酸的制造提供了重要手段.文中从合成途径的重构、关键酶的设计改造及与前体的协同调控、竞争性旁路途径的敲除、辅因子循环系统的构建等方面介绍了 一系列非天然氨基酸细胞工厂构建与应用的研...  相似文献   

11.
The process of native chemical ligation (NCL) is well described in the literature. An N-terminal cysteine-containing peptide reacts with a C-terminal thioester-containing peptide to yield a native amide bond after transesterification and acyl transfer. An N-terminal cysteine is required as both the N-terminal amino function and the sidechain thiol participate in the ligation reaction. In certain circumstances it is desirable, or even imperative, that the N-terminal region of a peptidic reaction partner remain unmodified, for Instance for the retention of biological activity after ligation. This work discusses the synthesis of a pseudo-N-terminal cysteine building block for incorporation into peptides using standard methods of solid phase synthesis. Upon deprotection, this building block affords a de facto N-terminal cysteine positioned on an amino acid sidechain. which is capable of undergoing native chemical ligation with a thioester. The syntheses of several peptides and structures containing this motif are detailed, their reactions discussed. and further applications of this technology proposed.  相似文献   

12.
Yu H  Daura X  van Gunsteren WF 《Proteins》2004,54(1):116-127
We have performed molecular dynamics (MD) simulations to study the dimerization, folding, and binding to a protein of peptides containing an unnatural amino acid. NMR studies have shown that the substitution of one residue in a tripeptide beta-strand by the unnatural amino acid Hao (5-HO2CCONH-2-MeO-C6H3-CO-NHNH2) modifies the conformational flexibility of the beta-strand and the hydrogen-bonding properties of its two edges: The number of hydrogen-bond donors and acceptors increases at one edge, whereas at the other, they are sterically hindered. In simulations in chloroform, the Hao-containing peptide 9 (i-PrCO-Phe-Hao-Val-NHBu) forms a beta-sheet-like hydrogen-bonded dimer, in good agreement with the available experimental data. Addition of methanol to the solution induces instability of this beta-sheet, as confirmed by the experiments. MD simulations also reproduce the folding of the synthetic peptide 1a (i-PrCO-Hao-Ut-Phe-Ile-Leu-NHMe) into a beta-hairpin-like structure in chloroform. Finally, the Hao-containing peptide, Ac-Ala-Hao-Ala-NHMe, is shown to form a stable complex with the Ras analogue, Rap1 A, in water at room temperature. Together with the available experimental data, these simulation studies indicate that Hao-containing peptides may serve as inhibitors of beta-sheet interactions between proteins.  相似文献   

13.
Gromiha MM  Selvaraj S 《FEBS letters》2002,518(1-3):129-134
In this study, the role of V12-Rac1 in the cisplatin-induced apoptosis was investigated. Cisplatin-induced apoptosis is associated with cytochrome c release, which can be inhibited by V12-Rac1 expression. The analysis of mitogen-activated protein kinase activity indicated that V12-Rac1 expression led to a decrease in p38 activity after exposure to cisplatin but not c-jun N-terminal kinase and extracellular signal-regulated kinase. Using pharmacological inhibitors, it was found that only p38 is a critical mediator in the cisplatin-induced apoptosis of NIH3T3 cells. This suggests that V12-Rac1 can stimulate the anti-apoptotic signaling pathway in response to cisplatin, and that decreased p38 activity caused by V12-Rac1 expression in cisplatin-treated NIH3T3 cells is crucial for V12-Rac1-dependent cell survival.  相似文献   

14.
In this paper, ultrafiltration was employed to facilitate the isolation of intermediates in native chemical ligation. Depending on the molecular weight cutoff of the membrane used, molecules with different sizes could be purified, separated, or concentrated by the ultrafiltration process. Total chemical synthesis of the polypeptide chain of the enzyme Sortase AΔN59 was used as an example of the application of ultrafiltration in chemical protein synthesis. Sortase A is a ligase that catalyzes transpeptidation reactions between proteins that have C‐terminal LPXTG recognition sequence and Gly5‐ on the peptidoglycan of bacterial cell walls [3]. Ultrafiltration technique facilitated synthesis of Sortase AΔN59 and was a promising tool in isolation of intermediates in native chemical ligation. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The C1b domain of protein kinase Cδ (PKCδ), a potent receptor for ligands such as diacylglycerol and phorbol esters, was synthesized by utilizing native chemical ligation. With this synthetic strategy, the domain was efficiently constructed and shown to have high affinity ligand binding and correct folding. The C1b domain has been utilized for the development of novel ligands for the control of phosphorylation by PKC family members. This strategy will pave the way for the efficient construction of C1b domains modified with fluorescent dyes, biotin, etc. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
17.
Calmodulin (CaM) is a 148-residue regulatory calcium-binding protein that activates a wide range of target proteins and enzymes. Calcium-saturated CaM has a bilobal structure, and each domain has an exposed hydrophobic surface region where target proteins are bound. These two "active sites" of calmodulin are remarkably rich in Met residues. Here we have biosynthetically substituted (up to 90% incorporation) the unnatural amino acids ethionine (Eth) and norleucine (Nle) for the nine Met residues of CaM. The substituted proteins bind in a calcium-dependent manner to hydrophobic matrices and a synthetic peptide, encompassing the CaM-binding domain of myosin light-chain kinase (MLCK). Infrared and circular dichroism spectroscopy show that there are essentially no changes in the secondary structure of these proteins compared to wild-type CaM (WT-CaM). One- and two-dimensional NMR studies of the Eth-CaM and Nle-CaM proteins reveal that, while the core of the proteins is relatively unaffected by the substitutions, the two hydrophobic interaction surfaces adjust to accommodate the Eth and Nle residues. Enzyme activation studies with MLCK show that Eth-CaM and Nle-CaM activate the enzyme to 90% of its maximal activity, with little changes in dissociation constant. For calcineurin only 50% activation was obtained, and the K(D) for Nle-CaM also increased 3.5-fold compared with WT-CaM. These data show that the "active site" Met residues of CaM play a distinct role in the activation of different target enzymes, in agreement with site-directed mutagenesis studies of the Met residues of CaM.  相似文献   

18.
The effect of chemical modification of amino acid residues essential for sugar binding in the α-D-galactoside specific jack fruit (Artocarpus integrifolia) seed lectin and the protection of the residues by specific sugar from modification were studied. Citraconylation or maleylation of 75 % of its lysyl residues or acetylation of 70 % of the tyrosyl residues completely abolished sugar binding and agglutination without dissociation of subunits. 1-O-methyl α-D-galactoside could protect its essential lysyl and tyrosyl groups from modification. Tryptophan could not be detected in the protein. Difference absorption spectra on binding of the above sugar confirmed the role of tyrosine residues and showed an association constantK = 0.4 × 103 M−1. Data suggests that the lectin could be immobilized without any loss of sugar binding activity  相似文献   

19.
Human glycodelin consists of 162 amino acid residues and two N‐linked glycans at Asn28 and Asn63. In this study, we synthesized it by a fully convergent strategy using native chemical ligation (NCL) in N to C direction. The four peptide segments corresponding to 1–31, 32–65, 66–105 and 106–162 sequences were synthesized by 9‐fluorenylmethoxycarbonyl based solid‐phase peptide synthesis. At the C‐terminus of the second segment, N‐ethyl‐S‐acetamidomethyl‐cysteine was attached as a post‐ligation thioesterification device. The N‐terminal two segments were condensed by the homocysteine‐mediated NCL at Leu‐Met site, and the product was methylated to convert homocysteine to methionine. After deprotection of acetamidomethyl group on the N‐ethylcysteine residue, the peptide was thioesterified by N‐alkylcysteine‐assisted method. The product was then ligated with the C‐terminal half, which was obtained by the NCL of third and fourth segments, to give the full‐length glycodelin. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Total chemical synthesis of human matrix Gla protein   总被引:2,自引:0,他引:2       下载免费PDF全文
Human matrix Gla protein (MGP) is a vitamin K-dependent extracellular matrix protein that binds Ca2+ ions and that is involved in the prevention of vascular calcification. MGP is a 10.6-kD protein (84 amino acids) containing five gamma-carboxyglutamic acid (Gla) residues and one disulfide bond. Studies of the mechanism by which MGP prevents calcification of the arterial media are hampered by the low solubility of the protein (<10 microg/mL). Because of solubility problems, processing of a recombinantly expressed MGP-fusion protein chimera to obtain MGP was unsuccessful. Here we describe the total chemical synthesis of MGP by tBoc solid-phase peptide synthesis (SPPS) and native chemical ligation. Peptide Tyr1-Ala53 was synthesized on a derivatized resin yielding a C-terminal thioester group. Peptide Cys54-Lys84 was synthesized on Lys-PAM resin yielding a C-terminal carboxylic acid. Subsequent native chemical ligation of the two peptides resulted in the formation of a native peptide bond between Ala53 and Cys54. Folding of the 1-84-polypeptide chain in 3 M guanidine (pH 8) resulted in a decrease of molecular mass from 10,605 to 10,603 (ESI-MS), representing the loss of two protons because of the formation of the Cys54-Cys60 internal disulfide bond. Like native MGP, synthetic MGP had the same low solubility when brought into aqueous buffer solutions with physiological salt concentrations, confirming its native like structure. However, the solubility of MGP markedly increased in borate buffer at pH 7.4 in the absence of sodium chloride. Ca2+-binding to MGP was confirmed by analytical HPLC, on which the retention time of MGP was reduced in the presence of CaCl2. Circular dichroism studies revealed a sharp increase in alpha-helicity at 0.2 mM CaCl2 that may explain the Ca2+-dependent shift in high-pressure liquid chromatography (HPLC)-retention time of MGP. In conclusion, facile and efficient chemical synthesis in combination with native chemical ligation yielded MGP preparations that can aid in unraveling the mechanism by which MGP prevents vascular calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号