首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
TonB-gated transporters have beta-barrels containing an amino-terminal globular domain that occludes the interior of the barrel. Mutations in the globular domain prevent transport of ligands across the outer membrane. Surprisingly, FepA with deletions of the globular domain (amino acids 3 to 150 and 17 to 150) was previously reported to retain significant sensitivity to colicins B and D and to use ferric enterochelin, all in a TonB-dependent fashion. To further understand TonB interaction with the beta-barrel, in the present study, proteins with deletions of amino acids 1 to 152, 7 to 152, 20 to 152, and 17 to 150 in fepA were constructed and expressed in a deltafepA strain. In contrast to previous studies of fepA globular domain deletions, constructs in this study did not retain sensitivity to colicin B and conferred only marginal sensitivity to colicin D. Consistent with these observations, they failed to bind colicin B and detectably cross-link to TonB in vivo. To address this discrepancy, constructs were tested in other strains, one of which (RWB18-60) did support activity of the FepA globular domain deletion proteins constructed in this study. The characteristics of that strain, as well as the strain in which the deltaFhuA globular domain mutants were seen to be active, suggests the hypothesis that interprotein complementation by two individually nonfunctional proteins restores TonB-dependent activity.  相似文献   

2.
In Escherichia coli, the outer membrane protein FepA is a receptor for the siderophore complex ferric enterobactin and for colicins B and D. To identify protein domains important for FepA activity, the effects of deletion and linker insertion mutations on receptor structure and function were examined. In-frame internal deletion mutations removing sequences encoding up to 304 amino acid residues resulted in functionally defective FepA polypeptides, although most were translocated efficiently to the outer membrane. One exception, a derivative lacking 87 internal amino acid residues near the N terminus, showed an inability to transport ferric enterobactin but retained limited colicin receptor function. Analysis of cells carrying 3'-terminal fepA deletion mutations suggested that residues within the C terminus of FepA may be involved in secretion and proper translocation of the protein to the outer membrane. Introduction of the peptide Leu-Glu after FepA residues 55, 142, or 324 severely impaired receptor function for all three ligands, while the same insertion after residues 339 or 359 had virtually no detrimental effect on FepA function. Foreign peptides inserted after residues 204 or 635 restricted colicin B and D function only, leaving ferric enterobactin transport ability at near wild-type levels. The results presented in this study have identified key regions of FepA potentially involved in receptor function and demonstrate the presence of both shared and unique ligand-responsive domains.  相似文献   

3.
Uptake of cobalamins and iron chelates in Escherichia coli K-12 is dependent on specific outer membrane transport proteins and the energy-coupling function provided by the TonB protein. The btuB product is the outer membrane receptor for cobalamins, bacteriophage BF23, and the E colicins. A short sequence near the amino terminus of mature BtuB, previously called the TonB box, is conserved in all tonB-dependent receptors and colicins and is the site of the btuB451 mutation (Leu-8----Pro), which prevents energy-coupled cobalamin uptake. This phenotype is partially suppressed by certain mutations in tonB. To examine the role of individual amino acids in the TonB box of BtuB, more than 30 amino acid substitutions in residues 6 to 13 were generated by doped oligonucleotide-directed mutagenesis. Many of the mutations affecting each amino acid did not impair transport activity, although some substitutions reduced cobalamin uptake and the Leu-8----Pro and Val-10----Gly alleles were completely inactive. To test whether the btuB451 mutation affects only cobalamin transport, a hybrid gene was constructed which encodes the signal sequence and first 39 residues of BtuB fused to the bulk of the ferrienterobactin receptor FepA (residues 26 to 723). This hybrid protein conferred all FepA functions but no BtuB functions. The presence of the btuB451 mutation in this fusion gene eliminated all of its tonB-coupled reactions, showing that the TonB box of FepA could be replaced by that from BtuB. These results suggest that the TonB-box region of BtuB is involved in active transport in a manner dependent not on the identity of specific side chains but on the local secondary structure.  相似文献   

4.
We have determined the nucleotide sequence of the Escherichia coli fepA gene, which codes for the outer membrane receptor for ferrienterochelin and colicins B and D. The predicted FepA polypeptide has a molecular weight of 79,908 and consists of 723 amino acids. A 22-amino acid leader or signal peptide preceded the mature protein. With respect to overall composition, hydropathy, net charge and distribution of nonpolar segments, the FepA polypeptide was typical of other E. coli outer membrane proteins, except that FepA contained 2 cysteine residues. Comparison of the deduced amino acid sequence of FepA with that of three other TonB-dependent receptors (BtuB, FhuA, and IutA) revealed only a few regions of sequence homology; one of these included the amino-termini. An amino acid substitution within the conserved amino-terminal region of BtuB resulted in production of a receptor that had normal binding functions but was incapable of energy-dependent transport of vitamin B12. This result suggests that the amino-terminal end of these four polypeptides is involved in interaction with the TonB protein or another step of energy transduction. Three other regions of homology were shared among the four proteins: one near residues 50 to 70, another at about residue 100 to 140, and the last between 20 and 40 amino acid residues from the carboxyl terminus. The function of these three regions remains speculative.  相似文献   

5.
Colicin B is a 55 kDa dumbbell-shaped protein toxin that uses the TonB system (outer membrane transporter, FepA, and three cytoplasmic membrane proteins TonB/ExbB/ExbD) to enter and kill Escherichia coli. FepA is a 22-stranded beta-barrel with its lumen filled by an amino-terminal globular domain containing an N-terminal semiconserved region, known as the TonB box, to which TonB binds. To investigate the mechanism of colicin B translocation across the outer membrane, we engineered cysteine (Cys) substitutions in the globular domain of FepA. Colicin B caused increased exposure to biotin maleimide labelling of all Cys substitutions, but to different degrees, with TonB as well as the FepA TonB box required for all increases. Because of the large increases in exposure for Cys residues from T13 to T51, we conclude that colicin B is translocated through the lumen of FepA, rather than along the lipid-barrel interface or through another protein. Part of the FepA globular domain (residues V91-V142) proved relatively refractory to labelling, indicating either that the relevant Cys residues were sequestered by an unknown protein or that a significant portion of the FepA globular domain remained inside the barrel, requiring concomitant conformational rearrangement of colicin B during its translocation. Unexpectedly, TonB was also required for colicin-induced exposure of the FepA TonB box, suggesting that TonB binds FepA at a different site prior to interaction with the TonB box.  相似文献   

6.
Transport of iron across the outer membrane   总被引:36,自引:0,他引:36  
Summary The TonB protein is involved in energy-coupled receptor-dependent transport processes across the outer membrane. The TonB protein is anchored in the cytoplasmic membrane but exposed to the periplasmic space. To fulfill its function, it has to couple the energy-providing metabolism in the cytoplasmic membrane with regulation of outer membrane receptor activity. Ferrichrome and albomycin transport, uptake of colicin M, and infection by the phages T1 and80 occur via the same receptor, the FhuA protein in the outer membrane. Therefore, this receptor is particularly suitable for the study of energy-coupled TonB-dependent transport across the outer membrane. Ferrichrome, albomycin and colicin M bind to the FhuA receptor but are not released into the periplasmic space of unenergized cells, ortonB mutants. In vivo interaction between FhuA and TonB is suggested by the restoration of activity of inactive FhuA proteins, bearing amino acid replacements in the TonB box, by TonB derivatives with single amino acid substitutions. Point mutations in thefhuA gene are suppressed by point mutations in thetonB gene. In addition, naturally occurring degradation of the TonB protein and its derivatives is preferentially prevented in vivo by FhuA and FhuA derivatives where functional interaction takes place. It is proposed that in the energized state, TonB induces a conformation in FhuA which leads to the release of the FhuA-bound compounds into the periplasmic space. Activation of FhuA by TonB depends on the ExbBD proteins in the cytoplasmic membrane. They can be partially replaced by the TolQR proteins which show strong sequence similarity to the ExbBD proteins. A physical interaction of these proteins with the TonB protein is suggested by TonB stabilization through ExbB and TolQR. We propose a permanent or reversible complex in the cytoplasmic membrane composed of the TonB protein and the ExbBD/TolQR proteins through which TonB is energized.  相似文献   

7.
A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.  相似文献   

8.
Many gram-negative bacteria produce and excrete siderophores, which complex iron with high affinity in the environment. The ferric siderophore complexes are transported across the outer membrane by receptor proteins. This process requires energy and is TonB dependent and must involve conformational changes in the receptor proteins to allow the transport of the ferric siderophores from the extracellular binding site to the periplasm. There is a large variety in the structures, molecular weights and charges among the siderophores. It was therefore realized that when the sequences of the many different receptor proteins were compared, simultaneously, all identities and close similarities, found in this manner, could only be due to residues involved in the conformational changes and transport mechanism, common to all the proteins, and not be due to the specificity of ligand recognition. Once the crystal structures of FepA, FhuA and FecA became available, it was immediately clear that the sequence similarities which were found in the simultaneous alignment, were all localized in a few structural domains, which are identical in the three structures and can therefore be expected to be maintained in all the proteins in this family. One of these domains, tentatively named the lock region, consists of 10 residues with a central quadrupole formed by two arginines and two glutamates, from the plug region and the beta barrel. We mutated several of these residues in FepA. All showed normal binding in quantitative binding studies. Some showed normal transport as well, however, the majority showed moderate to severe defective transport with ferric enterobactin. The results therefore show the validity of the hypothesis that the simultaneous sequence alignment will select the residues involved in the transport function of the receptor proteins. In addition the results allow to relate the severity of the transport deficiency to be correlated with the structure of the lock region while it is also possible to propose a function of this region in the conformational changes of the protein during the transport of the ligand from the binding site to the periplasm.  相似文献   

9.
The transfer RNase colicin D and ionophoric colicin B appropriate the outer membrane iron siderophore receptor FepA and share a common translocation requirement for the TonB pathway to cross the outer membrane. Despite the almost identical sequences of the N-terminal domains required for the translocation of colicins D and B, two spontaneous tonB mutations (Arg158Ser and Pro161Leu) completely abolished colicin D toxicity but did not affect either the sensitivity to other colicins or the FepA-dependent siderophore uptake capacity. The sensitivity to colicin D of both tonB mutants was fully restored by specific suppressor mutations in the TonB box of colicin D, at Ser18(Thr) and Met19(Ile), respectively. This demonstrates that the interaction of colicin D with TonB is critically dependent on certain residues close to position 160 in TonB and on the side chains of certain residues in the TonB box of colicin D. The effect of introducing the TonB boxes from other TonB-dependent receptors and colicins into colicins D and B was studied. The results of these and other changes in the two TonB boxes show that the role of residues at positions 18 and 19 in colicin D is strongly modulated by other nearby and/or distant residues and that the overall function of colicin D is much more dependent on the interaction with TonB involving the TonB box than is the function of colicin B.  相似文献   

10.
The ferric hydroxamate uptake receptor FhuA from Escherichia coli transports siderophores across the outer membrane (OM). TonB-ExbB-ExbD transduces energy from the cytoplasmic membrane to the OM by contacts between TonB and OM receptors that contain the Ton box, a consensus sequence near the N terminus. Although the Ton box is a region of known contact between OM receptors and TonB, our biophysical studies established that TonB binds to FhuA through multiple regions of interaction. Panning of phage-displayed random peptide libraries (Ph.D.-12, Ph.D.-C7C) against TonB identified peptide sequences that specifically interact with TonB. Analyses of these sequences using the Receptor Ligand Contacts (RELIC) suite of programs revealed clusters of multiply aligned peptides that mapped to FhuA. These clusters localized to a continuous periplasm-accessible surface: Ton box/switch helix; cork domain/beta1 strand; and periplasmic turn 8. Guided by such matches, synthetic oligonucleotides corresponding to DNA sequences identical to fhuA were fused to malE; peptides corresponding to the above regions were displayed at the N terminus of E.coli maltose-binding protein (MBP). Purified FhuA peptides fused to MBP bound specifically to TonB by ELISA. Furthermore, they competed with ligand-loaded FhuA for binding to TonB. RELIC also identified clusters of multiply aligned peptides corresponding to the Ton box regions in BtuB, FepA, and FecA; to periplasmic turn 8 in BtuB and FecA; and to periplasmic turns 1 and 2 in FepA. These experimental outcomes identify specific molecular contacts made between TonB and OM receptors that extend beyond the well-characterized Ton box.  相似文献   

11.
We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB(+) bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepADelta3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins.  相似文献   

12.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   

13.
Shigella dysentriae and other Gram‐negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 Å resolution the 3D structure of the TonB‐dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C‐terminal domain that folds into a 22‐stranded transmembrane β‐barrel, which is filled by the N‐terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 Å apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA‐Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N‐terminal TonB‐box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB‐box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB‐box. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The mechanism of TonB dependent siderophore uptake through outer membrane transporters in Gram-negative bacteria is poorly understood. In an effort to expand our knowledge of the interaction between TonB and the outer membrane transporters, we have cloned and expressed the FepA cork domain (11–154) from Salmonella typhimurium and characterized its interaction with the periplasmic C-terminal domain of TonB (103–239) by isotope assisted FTIR and NMR spectroscopy. For comparison we also performed similar experiments using the FecA N-terminal domain (1–96) from Escherichia coli which includes the conserved TonB box. The FepA cork domain was completely unfolded in solution, as observed for the E. coli cork domain previously [Usher et al. (2001) Proc Natl Acad Sci USA 98, 10676–10681]. The FepA cork domain was found to bind to TonB, eliciting essentially the same chemical shift changes in TonB C-terminal domain as was observed in the presence of TonB box peptides. The FecA construct did not cause this same structural change in TonB. The binding of the FepA cork domain to TonB-CTD was found to decrease the amount of ordered secondary structure in TonB-CTD. It is likely that the FecA N-terminal domain interferes with TonB-CTD binding to the TonB box. Binding of the FepA cork domain induces a loss of secondary structure in TonB, possibly exposing TonB surface area for additional intermolecular interactions such as potential homodimerization or additional interactions with the barrel of the outer membrane transporter.  相似文献   

15.
16.
Import-defective colicin B derivatives mutated in the TonB box   总被引:13,自引:5,他引:8  
The pore-forming colicin B is taken up into Escherichia coli by a receptor and TonB-dependent process. The receptor and colicin B both contain a similar amino acid sequence, close to the N-terminal end, termed the TonB box. Point mutations were introduced into the TonB-box region of the colicin B structural gene cba resulting in colicin B derivatives which were partially or totally inactive against E. coli cells. All derivatives still bound to the receptor. An inactive derivative killed cells when translocated across the outer membrane by osmotic shock treatment, and formed pores in planar lipid bilayer membranes identical to the wild-type colicin. Some of the mutations were partially suppressed by mutations in the tonB structural gene. It was concluded that the TonB-box mutations define a region that is involved in the uptake of colicin B across the outer membrane.  相似文献   

17.
The transport of Fe(III)-siderophore complexes and vitamin B12 across the outer membrane of Escherichia coli is an active transport process requiring a cognate outer membrane receptor, cytoplasmic membrane-derived proton motive force, and an energy-transducing protein anchored in the cytoplasmic membrane, TonB. This process requires direct physical contact between the outer membrane receptor and TonB. Previous studies have identified an amino-terminally located region (termed the TonB box) conserved in all known TonB-dependent outer membrane receptors as being essential for productive energy transduction. In the present study, a mutation in the TonB box of the ferric enterochelin receptor FepA resulted in the loss of detectable in vivo chemical cross-linking between FepA and TonB. Protease susceptibility studies indicated this effect was due to an alteration of conformation rather than the direct disruption of a specific site of physical contact. This suggested that TonB residue 160, implicated in previous studies as a site of allele-specific suppression of TonB box mutants, also made a conformational rather than a direct contribution to the physical interaction between TonB and the outer membrane receptors. This possibility was supported by the finding that TonB carboxyl-terminal truncations that retained Gln-160 were unable to participate in TonB-FepA complex formation, indicating that this site alone was not sufficient to support the physical interactions involved in energy transduction. These studies indicated that the final 48 residues of TonB were essential to this physical interaction. This region contains a putative amphipathic helix which could facilitate TonB-outer membrane interaction. Amino acid replacements at one site in this region were found to affect energy transduction but did not appear to greatly alter TonB conformation or the formation of a TonB-FepA complex. The effects of amino acid substitutions at several other TonB sites were also examined.  相似文献   

18.
Iron is an essential nutrient for all microorganisms with a few exceptions. Microorganisms use a variety of systems to acquire iron from the surrounding environment. One such system includes production of an organic molecule known as a siderophore by many bacteria and fungi. Siderophores have the capacity to specifically chelate ferric ions. The ferricsiderophore complex is then transported into the cell via a specific receptor protein located in the outer membrane. This is an energy dependent process and is the subject of investigation in many research laboratories. The crystal structures of three outer membrane ferricsiderophore receptor proteins FepA, FhuA and FecA from Escherichia coli and two FpvA and FptA from Pseudomonas aeruginosa have recently been solved. Four of them, FhuA, FecA, FpvA and FptA have been solved in ligand-bound forms, which gave insight into the residues involved in ligand binding. The structures are similar and show the presence of similar domains; for example, all of them consist of a 22 strand-β-barrel formed by approximately 600 C-terminal residues while approximately 150 N-terminal residues fold inside the barrel to form a plug domain. The plug domain obstructs the passage through the barrel; therefore our research focuses on the mechanism through which the ferricsiderophore complex is transported across the receptor into the periplasm. There are two possibilities, one in which the plug domain is expelled into the periplasm making way for the ferricsiderophore complex and the second in which the plug domain undergoes structural rearrangement to form a channel through which the complex slides into the periplasm. Multiple alignment studies involving protein sequences of a large number of outer membrane receptor proteins that transport ferricsiderophores have identified several conserved residues. All of the conserved residues are located within the plug and barrel domain below the ligand binding site. We have substituted a number of these residues in FepA and FhuA with either alanine or glutamine resulting in substantial changes in the chemical properties of the residues. This was done to study the effect of the substitutions on the transport of ferricsiderophores. Another strategy used was to create a disulfide bond between the residues located on two adjacent β-strands of the plug domain or between the residues of the plug domain and the β-barrel in FhuA by substituting appropriate residues with cysteine. We have looked for the variants where the transport is affected without altering the binding. The data suggest a distinct role of these residues in the mechanism of transport. Our data also indicate that these transporters share a common mechanism of transport and that the plug remains within the barrel and possibly undergoes rearrangement to form a channel to transport the ferricsiderophore from the binding site to the periplasm.  相似文献   

19.
The ferric hydroxymate uptake (FhuA) receptor from Escherichia coli facilitates transport of siderophores ferricrocin and ferrichrome and siderophore-antibiotic conjugates such as albomycin and rifamycin CGP 4832. FhuA is also the receptor for phages T5, T1, Phi80, UC-1, for colicin M and for the antimicrobial peptide microcin MccJ21. Energy for transport is provided by the cytoplasmic membrane complex TonB.ExbB.ExbD, which uses the proton motive force of the cytoplasmic membrane to transduce energy to the outer membrane. To accomplish energy transfer, TonB contacts outer membrane receptors. However, the stoichiometry of TonB. receptor complexes and their sites of interaction remain uncertain. In this study, analyses of FhuA interactions with two recombinant TonB proteins by analytical ultracentrifugation revealed that TonB forms a 2:1 complex with FhuA. The presence of the FhuA-specific ligand ferricrocin enhanced the amounts of complex but is not essential for its formation. Surface plasmon resonance experiments demonstrated that FhuA.TonB interactions are multiple and have apparent affinities in the nanomolar range. TonB also possesses two distinct binding regions: one in the C terminus of the protein, for which binding to FhuA is ferricrocin-independent, and a higher affinity region outside the C terminus, for which ferricrocin enhances interactions with FhuA. Together these experiments establish that FhuA.TonB interactions are more intricate than originally predicted, that the TonB.FhuA stoichiometry is 2:1, and that ferricrocin modulates binding of FhuA to TonB at regions outside the C-terminal domain of TonB.  相似文献   

20.
Escherichia coli TonB protein is an energy transducer, coupling cytoplasmic membrane energy to active transport of vitamin B12 and iron-siderophores across the outer membrane. TonB is anchored in the cytoplasmic membrane by its hydrophobic amino terminus, with the remainder occupying the periplasmic space. In this report we establish several functions for the hydrophobic amino terminus of TonB. A G-26-->D substitution in the amino terminus prevents export of TonB, suggesting that the amino terminus contains an export signal for proper localization of TonB within the cell envelope. Substitution of the first membrane-spanning domain of the cytoplasmic membrane protein TetA for the TonB amino terminus eliminates TonB activity without altering TonB export, suggesting that the amino terminus contains sequence-specific information. Detectable TonB cross-linking to ExbB is also prevented, suggesting that the two proteins interact primarily through their transmembrane domains. In vivo cleavage of the amino terminus of TonB carrying an engineered leader peptidase cleavage site eliminates (i) TonB activity, (ii) detectable interaction with a membrane fraction having a density intermediate to those of the cytoplasmic and outer membranes, and (iii) cross-linking to ExbB. In contrast, the amino terminus is not required for cross-linking to other proteins with which TonB can form complexes, including FepA. Additionally, although the amino terminus clearly is a membrane anchor, it is not the only means by which TonB associates with the cytoplasmic membrane. TonB lacking its amino-terminal membrane anchor still remains largely associated with the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号