首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PSD95/Dlg/ZO-1 (PDZ) domain-containing protein zonula occludens-1 (ZO-1) selectively localizes to the cytoplasmic basis of the slit diaphragm, a specialized cell-cell contact in between glomerular podocytes necessary to prevent the loss of protein in the urine. However, the function of ZO-1 at the slit diaphragm has remained elusive. Deletion of Neph1, a slit diaphragm protein of the immunoglobulin superfamily with a cytoplasmic PDZ binding site, causes proteinuria in mice. We demonstrate now that Neph1 binds ZO-1. This interaction was mediated by the first PDZ domain of ZO-1 and involved the conserved PDZ domain binding motif present in the carboxyl terminus of the three known Neph family members. Furthermore, Neph1 co-immunoprecipitates with ZO-1 from lysates of mouse kidneys, demonstrating that this interaction occurs in vivo. Both deletion of the PDZ binding motif of Neph1 as well as threonine-to-glutamate mutation of the threonine within the binding motif abrogated binding of ZO-1, suggesting that phosphorylation may regulate this interaction. ZO-1 binding was associated with a strong increase in tyrosine phosphorylation of the cytoplasmic tail of Neph1 and dramatically accelerated the ability of Neph1 to induce signal transduction. Thus, our data suggest that ZO-1 may organize Neph proteins and recruit signal transduction components to the slit diaphragm of podocytes.  相似文献   

2.
Glomerular visceral epithelial cells (podocytes) appear to play a central role in maintaining the selective filtration barrier of the renal glomerulus. While the immunoglobulin superfamily member Nephrin was proposed to act as a cell adhesion molecule at the podocyte intercellular junction necessary for maintaining glomerular perm selectivity, the Nephrin ligand has not been identified. The existence of a new subfamily of Nephrin-like molecules including Neph1 was recently described. Genetic deletion of Nephrin or Neph1 resulted in similar phenotypes of podocyte foot process effacement and proteinuria. The subcellular localization of Neph1 and the possibility that Nephrin and Neph1 interact was investigated. Polyclonal antiserum for Neph1 was raised and characterized. Neph1 migrated as a 90-kDa protein on SDS-PAGE under reducing conditions. Neph1 was identified in a glomerular and podocyte-specific distribution in adult rat kidney. Like Nephrin and Podocin, Neph1 was enriched in Triton X-100 detergent-resistant membrane fractions. Consistent with this observation, immunogold electron microscopy demonstrated that Neph1 localized exclusively to lateral margins of podocyte foot processes at the insertion of the slit diaphragm. Neph1 and Nephrin participate in a direct cis-interaction involving their cytoplasmic domains. In addition, interactions between the extracellular domain of Nephrin and itself and between the extracellular domain of Nephrin and that of Neph1 were detected. Neph1 did not interact via a homophilic interaction. These observations suggest that Nephrin and Neph1 form a hetero-oligomeric receptor complex in the plane of the membrane that might interact across the foot process intercellular junction through interactions between Nephrin with itself and Neph1.  相似文献   

3.
In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury.  相似文献   

4.
The slit diaphragm (SD) is an intercellular junction between renal glomerular epithelial cells (podocytes) that is essential for permselectivity in glomerular ultrafiltration. The SD components, nephrin and Neph1, assemble a signaling complex in a tyrosine phosphorylation dependent manner, and regulate the unique actin cytoskeleton of podocytes. Mutations in the NPHS1 gene that encodes nephrin cause congenital nephrotic syndrome (CNS), which is characterized by the loss of the SD and massive proteinuria. Recently, we have identified the expression of the transmembrane glycoprotein signal regulatory protein α (SIRPα) at the SD. In the present study, we analyzed the expression of SIRPα in developing kidneys, in kidneys from CNS patients and in proteinuric rat models. The possibility that SIRPα interacts with known SD proteins was also investigated. SIRPα was concentrated at the SD junction during the maturation of intercellular junctions. In the glomeruli of CNS patients carrying mutations in NPHS1, where SD formation is disrupted, the expression of SIRPα as well as Neph1 and nephrin was significantly decreased, indicating that SIRPα is closely associated with the nephrin complex. Indeed, SIRPα formed hetero-oligomers with nephrin in cultured cells and in glomeruli. Furthermore, the cytoplasmic domain of SIRPα was highly phosphorylated in normal glomeruli, and its phosphorylation was dramatically decreased upon podocyte injury in?vivo. Thus, SIRPα interacts with nephrin at the SD, and its phosphorylation is dynamically regulated in proteinuric states. Our data provide new molecular insights into the phosphorylation events triggered by podocyte injury. Structured digital abstract ? Sirp-alpha?physically interacts?with?Nephrin?by?anti bait coimmunoprecipitation?(View interaction) ? Sirp-alpha?physically interacts?with?Nephrin?by?anti tag coimmunoprecipitation?(View interaction).  相似文献   

5.
There are several lines of evidence that the podocyte slit diaphragm (SD), which serves as a structural framework for the filtration barrier in kidney glomerulus, also plays an essential role as a signaling platform. Several SD components including nephrin and TRPC6 are known to be phosphorylated by a Src family tyrosine kinase (SFK), Fyn. Here we have characterized Neph1, another SD component, as a novel substrate of SFK. Fyn interacts with and phosphorylates the cytoplasmic domain of Neph1 in vitro and in intact cells. Peptide mass fingerprinting and site-directed mutagenesis identified several tyrosine phosphorylation sites. In pull-down assays using rat glomerular lysates, Neph1 but not nephrin specifically binds to adaptor protein Grb2 and tyrosine kinase Csk in a phosphorylation-dependent manner. Both tyrosine 637 and 638 of Neph1 are crucial for Neph1-Grb2 binding. Phosphorylation of tyrosine 637 is significantly up-regulated in in vivo models of podocyte injury. Furthermore, Neph1 attenuates ERK activation elicited by Fyn, and this inhibitory effect requires the intact binding motif for the Grb2 SH2 domain. Our results shown here demonstrate that Neph1 is a novel in vivo substrate of SFK and suggest that Neph1 modulates ERK signaling through phosphorylation-dependent interaction with Grb2. Thus, SFK orchestrates a wide spectrum of protein-protein interactions and intracellular signaling networks at SD through tyrosine phosphorylation.  相似文献   

6.
The transmembrane protein nephrin is a key component of the kidney slit diaphragm that contributes to the morphology of podocyte foot processes through signaling to the underlying actin cytoskeleton. We have recently reported that tyrosine phosphorylation of the cytoplasmic tail of nephrin facilitates recruitment of Nck SH2/SH3 adaptor proteins and subsequent actin remodeling and that phosphorylation of the Nck binding sites on nephrin is decreased during podocyte injury. We now demonstrate that Nck directly modulates nephrin phosphorylation through formation of a signaling complex with the Src family kinase Fyn. The ability of Nck to enhance nephrin phosphorylation is compromised in the presence of a Src family kinase inhibitor and when the SH3 domains of Nck are mutated. Furthermore, induced loss of Nck expression in podocytes in vivo is associated with a rapid reduction in nephrin tyrosine phosphorylation. Our results suggest that Nck may facilitate dynamic signaling events at the slit diaphragm by promoting Fyn-dependent phosphorylation of nephrin, which may be important in the regulation of foot process morphology and response to podocyte injury.  相似文献   

7.
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their foot processes and the interposed slit diaphragm. So far, very little is known about the guidance cues and polarity signals required to regulate proper development and maintenance of the glomerular filtration barrier. We now identify Par3, Par6, and atypical protein kinase C (aPKC) polarity proteins as novel Neph1-Nephrin-associated proteins. The interaction was mediated through the PDZ domain of Par3 and conserved carboxyl terminal residues in Neph1 and Nephrin. Par3, Par6, and aPKC localized to the slit diaphragm as shown in immunofluorescence and immunoelectron microscopy. Consistent with a critical role for aPKC activity in podocytes, inhibition of glomerular aPKC activity with a pseudosubstrate inhibitor resulted in a loss of regular podocyte foot process architecture. These data provide an important link between cell recognition mediated through the Neph1-Nephrin complex and Par-dependent polarity signaling and suggest that this molecular interaction is essential for establishing the three-dimensional architecture of podocytes at the kidney filtration barrier.  相似文献   

8.
The podocyte proteins Neph1 and nephrin organize a signaling complex at the podocyte cell membrane that forms the structural framework for a functional glomerular filtration barrier. Mechanisms regulating the movement of these proteins to and from the membrane are currently unknown. This study identifies a novel interaction between Neph1 and the motor protein Myo1c, where Myo1c plays an active role in targeting Neph1 to the podocyte cell membrane. Using in vivo and in vitro experiments, we provide data supporting a direct interaction between Neph1 and Myo1c which is dynamic and actin dependent. Unlike wild-type Myo1c, the membrane localization of Neph1 was significantly reduced in podocytes expressing dominant negative Myo1c. In addition, Neph1 failed to localize at the podocyte cell membrane and cell junctions in Myo1c-depleted podocytes. We further demonstrate that similarly to Neph1, Myo1c also binds nephrin and reduces its localization at the podocyte cell membrane. A functional analysis of Myo1c knockdown cells showed defects in cell migration, as determined by a wound assay. In addition, the ability to form tight junctions was impaired in Myo1c knockdown cells, as determined by transepithelial electric resistance (TER) and bovine serum albumin (BSA) permeability assays. These results identify a novel Myo1c-dependent molecular mechanism that mediates the dynamic organization of Neph1 and nephrin at the slit diaphragm and is critical for podocyte function.  相似文献   

9.
Slit diaphragms are specialized junctions between glomerular epithelial cells (podocytes) that are crucial for glomerular ultrafiltration. The Ig superfamily members nephrin and Neph1 are essential components of the slit diaphragm, whereas the role of Neph1 homologue Neph3 in the slit diaphragm is unknown. In the present paper we show that Neph3 homodimerizes and heterodimerizes with nephrin and Neph1. We further investigated whether these interactions play a role in cell adhesion by using mouse L fibroblasts that lack endogenous cell-adhesion activity and found that Neph1 and Neph3 are able to induce cell adhesion alone, whereas nephrin needs to trans-interact with Neph1 or Neph3 in order to promote formation of cell-cell contacts. Tyrosine phosphorylation of nephrin was down-regulated after nephrin trans-interacted with either Neph1 or Neph3 leading to formation of cell-cell contacts. We further found that the expression of Neph3 was increased in nephrin-deficient mouse podocytes. The findings of the present paper show that nephrin and Neph1 or Neph3 trans-interactions promote cell-contact formation, suggesting that they may also function together in slit diaphragm assembly.  相似文献   

10.
11.
The kidney filtration barrier is formed by the combination of endothelial cells, basement membrane and epithelial cells called podocytes. These specialized actin-rich cells form long and dynamic protrusions, the foot processes, which surround glomerular capillaries and are connected by specialized intercellular junctions, the slit diaphragms. Failure to maintain the filtration barrier leads to massive proteinuria and nephrosis. A number of proteins reside in the slit diaphragm, notably the transmembrane proteins Nephrin and Neph1, which are both able to act as tyrosine phosphorylated scaffolds that recruit cytoplasmic effectors to initiate downstream signaling. While association between tyrosine-phosphorylated Neph1 and the SH2/SH3 adaptor Grb2 was shown in vitro to be sufficient to induce actin polymerization, in vivo evidence supporting this finding is still lacking. To test this hypothesis, we generated two independent mouse lines bearing a podocyte-specific constitutive inactivation of the Grb2 locus. Surprisingly, we show that mice lacking Grb2 in podocytes display normal renal ultra-structure and function, thus demonstrating that Grb2 is not required for the establishment of the glomerular filtration barrier in vivo. Moreover, our data indicate that Grb2 is not required to restore podocyte function following kidney injury. Therefore, although in vitro experiments suggested that Grb2 is important for the regulation of actin dynamics, our data clearly shows that its function is not essential in podocytes in vivo, thus suggesting that Grb2 rather plays a secondary role in this process.  相似文献   

12.
Podocyte foot process effacement and disruption of the slit diaphragm are typically associated with glomerular proteinuria and can be induced in rats by the injection of puromycin aminonucleoside. Here, we show that the induction of puromycin aminonucleoside nephrosis involves podocyte migration conducted by a coordinated interplay between the cysteine protease cathepsin L and alpha(3) integrin. Puromycin aminonucleoside treatment up-regulates cathepsin L expression in podocytes in vivo as well as expression and enzymatic activity of cathepsin L in podocytes in vitro. Isolated podocytes from mice lacking cathepsin L are protected from cell puromycin aminonucleoside-induced cell detachment. The functional significance of cathepsin L expression was underscored by the observation that puromycin aminonucleoside-induced cell migration was slowed down in cathepsin L-deficient podocytes and by the preservation of cell-cell contacts and expression of vital slit diaphragm protein CD2AP. Cathepsin L expression and activity were induced in podocytes lacking alpha(3) integrin. Similarly, acute functional inhibition of alpha(3) integrin in wild type podocytes with a blocking antibody increased the expression of cathepsin L activity. Down-regulation of alpha(3) integrin protected against puromycin aminonucleoside-induced podocyte detachment. In summary, these data establish that podocyte foot process effacement is a migratory event involving a novel interplay between cathepsin L and alpha(3) integrin.  相似文献   

13.
Under healthy conditions, foot processes of neighbouring podocytes are interdigitating and connected by an electron-dense slit diaphragm. Besides slit diaphragm proteins, typical adherens junction proteins are also found to be expressed at this cell-cell junction. It is therefore considered as a highly specialized type of adherens junction. During podocyte injury, podocyte foot processes lose their characteristic 3D structure and the filtration slits typical meandering structure gets linearized. It is still under debate how this change of structure leads to the phenomenon of proteinuria. Using super-resolution 3D-structured illumination microscopy, we observed a spatially restricted up-regulation of the tight junction protein claudin-5 (CLDN5) in areas where podocyte processes of patients suffering from minimal change disease (MCD), focal and segmental glomerulosclerosis (FSGS) as well as in murine nephrotoxic serum (NTS) nephritis and uninephrectomy DOCA-salt hypertension models, were locally injured. CLDN5/nephrin ratios in human glomerulopathies and NTS-treated mice were significantly higher compared to controls. In patients, the CLDN5/nephrin ratio is significantly correlated with the filtration slit density as a foot process effacement marker, confirming a direct association of local CLDN5 up-regulation in injured foot processes. Moreover, CLDN5 up-regulation was observed in some areas of high filtration slit density, suggesting that CLND5 up-regulation preceded the changes of foot processes. Therefore, CLDN5 could serve as a biomarker predicting early foot process effacement.  相似文献   

14.
Podocyte and its slit diaphragm play an important role in maintaining normal glomerular filtration barrier function and structure. Podocyte apoptosis and slit diaphragm injury leads to proteinuria and glomerulosclerosis. However, the molecular mechanism of podocyte injury remains poorly understood. The family of mitogen-activated protein kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase, and p38 signal pathways, are implicated in the progression of various glomerulopathies. However, the role of the activated signal pathway(s) in podocyte injury is elusive. This study examined phosphorylation of ERK in rat puromycin aminonucleoside (PAN) nephropathy as well as conditionally immortalized mouse podocyte treated with PAN in vitro. The effect of treatment with U0126, an inhibitor of ERK, was also investigated. In PAN nephropathy, the phosphorylation of ERK was marked. In podocyte injury, the marked and sustained activation of ERK pathway was also observed before the appearance of significant podocyte apoptosis. Pretreatment with U0126 to podocyte completely inhibited ERK activation, with complete suppression podocyte apoptosis and ameliorated nephrin protein expression along with the phosphorylation of nephrin in podocyte injury. In cultured podocyte, PAN induced actin recorganition, and U0126 inhibited such change. However, U0126 did not recovery the phosphorylation change of neph1 in podocyte injury. We concluded that the sustained activation of ERK along with the phosphorylation of neph1 might be necessary for podocyte injury. The study here suggested that ERK might become a potential target for therapeutic intervention to prevent podocytes from injury which will result in proteinuria.  相似文献   

15.
The slit diaphragm connecting the adjacent foot processes of glomerular epithelial cells (podocytes) is the final barrier of the glomerular capillary wall and serves to prevent proteinuria. Podocytes are understood to be terminally differentiated cells and share some common features with neurons. Neurexin is a presynaptic adhesion molecule that plays a role in synaptic differentiation. Although neurexin has been understood to be specifically expressed in neuronal tissues, we found that neurexin was expressed in several organs. Several forms of splice variants of neurexin-1α were detected in the cerebrum, but only one form of neurexin-1α was detected in glomeruli. Immunohistochemical study showed that neurexin restrictedly expressed in the podocytes in kidneys. Dual-labeling analyses showed that neurexin was colocalized with CD2AP, an intracellular component of the slit diaphragm. Immunoprecipitation assay using glomerular lysate showed that neurexin interacted with CD2AP and CASK. These observations indicated that neurexin localized at the slit diaphragm area. The staining intensity of neurexin in podocytes was clearly lowered, and their staining pattern shifted to a more discontinuous patchy pattern in the disease models showing severe proteinuria. The expression and localization of neurexin in these models altered more clearly and rapidly than that of other slit diaphragm components. We propose that neurexin is available as an early diagnostic marker to detect podocyte injury. Neurexin coincided with nephrin, a key molecule of the slit diaphragm detected in a presumptive podocyte of the developing glomeruli and in the glomeruli for which the slit diaphragm is repairing injury. These observations suggest that neurexin is involved in the formation of the slit diaphragm and the maintenance of its function.  相似文献   

16.
Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target.  相似文献   

17.
Phosphorylation (activation) and dephosphorylation (deactivation) of the slit diaphragm proteins NEPHRIN and NEPH1 are critical for maintaining the kidney epithelial podocyte actin cytoskeleton and, therefore, proper glomerular filtration. However, the mechanisms underlying these events remain largely unknown. Here we show that NEPHRIN and NEPH1 are novel receptor proteins for hepatocyte growth factor (HGF) and can be phosphorylated independently of the mesenchymal epithelial transition receptor in a ligand-dependent fashion through engagement of their extracellular domains by HGF. Furthermore, we demonstrate SH2 domain–containing protein tyrosine phosphatase-2–dependent dephosphorylation of these proteins. To establish HGF as a ligand, purified baculovirus-expressed NEPHRIN and NEPH1 recombinant proteins were used in surface plasma resonance binding experiments. We report high-affinity interactions of NEPHRIN and NEPH1 with HGF, although NEPHRIN binding was 20-fold higher than that of NEPH1. In addition, using molecular modeling we constructed peptides that were used to map specific HGF-binding regions in the extracellular domains of NEPHRIN and NEPH1. Finally, using an in vitro model of cultured podocytes and an ex vivo model of Drosophila nephrocytes, as well as chemically induced injury models, we demonstrated that HGF-induced phosphorylation of NEPHRIN and NEPH1 is centrally involved in podocyte repair. Taken together, this is the first study demonstrating a receptor-based function for NEPHRIN and NEPH1. This has important biological and clinical implications for the repair of injured podocytes and the maintenance of podocyte integrity.  相似文献   

18.
Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand.  相似文献   

19.
20.
Vasodilator‐stimulated phosphoprotein (VASP) is a 39‐kDa protein belonging to the Ena/VASP protein family, which is involved in adhesion, migration, cell–cell interaction, and regulation of pathways connected with actin cytoskeleton remodeling. VASP is phosphorylated at Tyr39, Ser157, Ser239, Thr278, and Ser322 mainly by tyrosine kinase Abl, cAMP‐dependent protein kinase, protein kinase G, AMP‐activated protein kinase, and protein kinase D1, respectively. VASP phosphorylation, as a regulator of actin dynamics, may lead to impaired reorganization of the podocyte actin cytoskeleton not only by indirect interaction of VASP with actin but also by regulation of other signaling pathways. A few studies have shown that VASP participates in the development of renal diseases and mediates podocyte movement through its interaction with proteins of the slit diaphragm. VASP phosphorylation may cause reduced actin filament assembly in podocytes and mediate disturbances in regulation of filtration barrier permeability as a consequence of podocyte foot process effacement. In this paper, we describe the role of VASP in podocyte function, mainly in the context of actin dynamics and glomerular filtration barrier permeability. In addition, we discuss the involvement of VASP and its phosphorylated forms in the development of kidney diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号