共查询到20条相似文献,搜索用时 0 毫秒
1.
Nucleotide-dependent conformational changes in HisP: molecular dynamics simulations of an ABC transporter nucleotide-binding domain
下载免费PDF全文

ATP-binding cassette (ABC) transporters mediate the movement of molecules across cell membranes in both prokaryotes and eukaryotes. In ABC transporters, solute translocation occurs after ATP is either bound or hydrolyzed at the intracellular nucleotide-binding domains (NBDs). Molecular dynamics (MD) simulations have been employed to study the interactions of nucleotide with NBD. The results of extended (approximately 20 ns) MD simulations of HisP (total simulation time approximately 80 ns), the NBD of the histidine transporter HisQMP2J from Salmonella typhimurium, are presented. Analysis of the MD trajectories reveals conformational changes within HisP that are dependent on the presence of ATP in the binding pocket of the protein, and are sensitive to the presence/absence of Mg ions bound to the ATP. These changes are predominantly confined to the alpha-helical subdomain of HisP. Specifically there is a rotation of three alpha-helices within the subdomain, and a movement of the signature sequence toward the bound nucleotide. In addition, there is considerable conformational flexibility in a conserved glutamine-containing loop, which is situated at the interface between the alpha-helical subdomain and the F1-like subdomain. These results support the mechanism for ATP-induced conformational transitions derived from the crystal structures of other NBDs. 相似文献
2.
The membrane-bound complex of the prokaryotic histidine permease, a periplasmic protein-dependent ABC transporter, is composed of two hydrophobic subunits, HisQ and HisM, and two identical ATP-binding subunits, HisP, and is energized by ATP hydrolysis. The soluble periplasmic binding protein, HisJ, creates a signal that induces ATP hydrolysis by HisP. The crystal structure of HisP has been resolved and shown to have an "L" shape, with one of its arms (arm I) being involved in ATP binding and the other one (arm II) being proposed to interact with the hydrophobic subunits (Hung, L.-W., Wang, I. X., Nikaido, K., Liu, P.-Q., Ames, G. F.-L., and Kim, S.-H. (1998) Nature 396, 703-707). Here we study the basis for the defect of several HisP mutants that have an altered signaling pathway and hydrolyze ATP constitutively. We use biochemical approaches to show that they produce a loosely assembled membrane complex, in which the mutant HisP subunits are disengaged from HisQ and HisM, suggesting that the residues involved are important in the interaction between HisP and the hydrophobic subunits. In addition, the mutant HisPs are shown to have lower affinity for ADP and to display no cooperativity for ATP. All of the residues affected in these HisP mutants are located in arm II of the crystal structure of HisP, thus supporting the proposed function of arm II of HisP as interacting with HisQ and HisM. A revised model involving a cycle of disengagement and reengagement of HisP is proposed as a general mechanism of action for ABC transporters. 相似文献
3.
One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease. 总被引:4,自引:0,他引:4
The membrane-bound complex of the Salmonella typhimurium histidine permease, a member of the ABC transporters (or traffic ATPases) superfamily, is composed of two integral membrane proteins, HisQ and HisM, and two copies of an ATP-binding subunit, HisP, which hydrolyze ATP, thus supplying the energy for translocation. The three-dimensional structure of HisP has been resolved. Extensive evidence indicates that the HisP subunits form a dimer. We investigated the mechanism of action of such a dimer, both within the complex and in soluble form, by creating heterodimers between the wild type and mutant HisP proteins. The data strongly suggest that within the complex both subunits hydrolyze ATP and that one subunit is activated by the other. In a heterodimer containing one wild type and one hydrolysis defective subunit both hydrolysis and ligand translocation occur at half the rate of the wild type. Soluble HisP also hydrolyzes ATP if one subunit is inactive; its specific activity is identical to that of the wild type, indicating that only one of the subunits in a soluble dimer is involved in hydrolysis. We show that the activating ability varies depending on the nature of the substitution of a well conserved residue, His-211. 相似文献
4.
Shin-ichiro Narita 《FEBS letters》2009,583(13):2160-2164
Seven Lpt proteins (A through G) are thought to be involved in lipopolysaccharide transport from the inner to outer membrane of Escherichia coli. LptB belongs to the ATP-binding cassette transporter superfamily. Although the lptB gene lacks neighboring genes encoding membrane subunits, bioinformatic analyses recently indicated that two distantly located consecutive genes, lptF and lptG, could encode membrane subunits. To examine this possibility, LptB was expressed with LptF and LptG. We report here that both LptF and LptG formed a complex with LptB. Furthermore, an inner membrane protein, LptC, which had been implicated in lipopolysaccharide transport, was also included in this complex.
Structured summary
MINT-7137021: lptb (uniprotkb:P0A9V1) physically interacts (MI:0914) with lptc (uniprotkb:P0ADV9), lptg (uniprotkb:P0ADC6) and lptf (uniprotkb:P0AF98) by pull down (MI:0096)MINT-7137160: lptb (uniprotkb:P0A9V1) physically interacts (MI:0914) with lptf (uniprotkb:P0AF98) and lptg (uniprotkb:P0ADC6) by pull down (MI:0096) 相似文献5.
Hilge M Siegal G Vuister GW Güntert P Gloor SM Abrahams JP 《Nature structural biology》2003,10(6):468-474
The Na,K-ATPase hydrolyzes ATP to drive the coupled extrusion and uptake of Na+ and K+ ions across the plasma membrane. Here, we report two high-resolution NMR structures of the 213-residue nucleotide-binding domain of rat alpha1 Na,K-ATPase, determined in the absence and the presence of ATP. The nucleotide binds in the anti conformation and shows a relative paucity of interactions with the protein, reflecting the low-affinity ATP-binding state. Binding of ATP induces substantial conformational changes in the binding pocket and in residues located in the hinge region connecting the N- and P-domains. Structural comparison with the Ca-ATPase stabilized by the inhibitor thapsigargin, E2(TG), and the model of the H-ATPase in the E1 form suggests that the observed changes may trigger the series of events necessary for the release of the K+ ions and/or disengagement of the A-domain, leading to the eventual transfer of the gamma-phosphate group to the invariant Asp369. 相似文献
6.
The periplasmic histidine transport system (permease) of Escherichia coli and Salmonella typhimurium is composed of a soluble, histidine-binding receptor located in the periplasm and a complex of three membrane-bound proteins of which one, HisP, was shown previously to bind ATP. These permeases are energized by ATP. HisP is a member of a family of membrane transport proteins which is conserved in all periplasmic permeases and is presumed to be involved in coupling the energy of ATP to periplasmic transport. In this paper the nature of the ATP-binding site of HisP has been explored by identification of some of the residues that come into contact with ATP. HisP was derivatized with 8-azido-ATP (N3ATP). Both the underivatized and the derivatized forms of HisP were solubilized, purified, and digested with trypsin. The resulting tryptic peptides were resolved by high pressure liquid chromatography, and peptides modified by N3ATP were isolated and sequenced. Two peptides, X and Z, spanning amino acid residues 16-23 and 31-45, were found to contain sites of N3ATP attachment at His19 and Ser41, respectively. Both peptides are close to the amino-terminal end of HisP; peptide Z is located in one of the well conserved regions comprising the nucleotide-binding consensus motifs of the energy-coupling components of these permeases. These consensus motifs are found in many purine nucleotide-binding proteins. The relationship between the location of these residues and the overall structure of the ATP-binding site is discussed. 相似文献
7.
Lactose permease is an integral membrane protein that uses the cell membrane's proton gradient for import of lactose. Based on extensive biochemical data and a substrate-bound crystal structure, intermediates involved in lactose/H(+) co-transport have been suggested. Yet, the transport mechanism, especially the coupling of protonation states of essential residues and protein conformational changes involved in the transport, is not understood. Here we report molecular-dynamics simulations of membrane-embedded lactose permease in different protonation states, both in the presence and in the absence of lactose. The results analyzed in terms of pore diameter, salt-bridge formation, and substrate motion, strongly implicate Glu(269) as one of the main proton translocation sites, whose protonation state controls several key steps of the transport process. A critical ion pair (Glu(269) and Arg(144)) was found to keep the cytoplasmic entrance open, but via a different mechanism than the currently accepted model. After protonation of Glu(269), the salt bridge between Glu(269) and Arg(144) was found to break, and Arg(144) to move away from Glu(269), establishing a new salt bridge with Glu(126); furthermore, neutralization of Glu(269) and the displacement of Arg(144) and consequently of water molecules from the interdomain region was seen to initiate the closing of the cytoplasmic half channel (2.6-4.0 A reduction in diameter in the cytoplasmic constriction region in 10 ns) by allowing hydrophobic surfaces of the N- and C-domains to fuse. Charged Glu(269) was found to strongly bind the lactose permeant, indicating that proton transfer from water or another residue to Glu(269) is a prerequisite for unbinding of lactose from the binding pocket. 相似文献
8.
Austin J Rice Frances JD Alvarez Amy L Davidson Heather W Pinkett 《Channels (Austin, Tex.)》2014,8(4):327-333
In order to shuttle substrates across the lipid bilayer, membrane proteins undergo a series of conformation changes that are influenced by protein structure, ligands, and the lipid environment. To test the effect of lipid on conformation change of the ABC transporter MolBC, EPR studies were conducted in lipids and detergents of variable composition. In both a detergent and lipid environment, MolBC underwent the same general conformation changes as detected by site-directed EPR spectroscopy. However, differences in activity and the details of the EPR analysis indicate conformational rigidity that is dependent on the lipid environment. From these observations, we conclude that native-like lipid mixtures provide the transporter with greater activity and conformational flexibility as well as technical advantages such as reconstitution efficiency and protein stability. 相似文献
9.
《Channels (Austin, Tex.)》2013,7(4):327-333
In order to shuttle substrates across the lipid bilayer, membrane proteins undergo a series of conformation changes that are influenced by protein structure, ligands, and the lipid environment. To test the effect of lipid on conformation change of the ABC transporter MolBC, EPR studies were conducted in lipids and detergents of variable composition. In both a detergent and lipid environment, MolBC underwent the same general conformation changes as detected by site-directed EPR spectroscopy. However, differences in activity and the details of the EPR analysis indicate conformational rigidity that is dependent on the lipid environment. From these observations, we conclude that native-like lipid mixtures provide the transporter with greater activity and conformational flexibility as well as technical advantages such as reconstitution efficiency and protein stability. 相似文献
10.
Horn C Jenewein S Tschapek B Bouschen W Metzger S Bremer E Schmitt L 《The Biochemical journal》2008,412(2):233-244
The ABC transporter (ATP-binding-cassette transporter) OpuA is one of five membrane transport systems in Bacillus subtilis that mediate osmoprotection by importing compatible solutes. Just like all bacterial and archaeal ABC transporters that catalyse the import of substrates, OpuA (where Opu is osmoprotectant uptake) is composed of an ATPase subunit (OpuAA), a transmembrane subunit (OpuAB) and an extracellular substrate-binding protein (OpuAC). In contrast with many well-known ABC-ATPases, OpuAA is composed not only of a catalytic and a helical domain but also of an accessory domain located at its C-terminus. The paradigm of such an architecture is MalK, the ABC-ATPase of the maltose importer of Escherichia coli, for which detailed structural and functional information is available. In the present study, we have applied solution FRET (F?rster resonance energy transfer) techniques using two single cysteine mutants to obtain initial structural information on the architecture of the OpuAA dimer in solution. Analysing our results in detail and comparing them with the existing MalK structures revealed that the catalytic and helical domains adopted an arrangement similar to those of MalK, whereas profound differences in the three-dimensional orientation of the accessory domain, which contains two CBS (cystathionine beta-synthetase) domains, were observed. These results shed new light on the role of this accessory domain present in a certain subset of ABC-ATPase in the fine-tuning of three-dimensional structure and biological function. 相似文献
11.
Pretz MG Albers SV Schuurman-Wolters G Tampé R Driessen AJ van der Does C 《Biochemistry》2006,45(50):15056-15067
ATP-binding cassette transporters drive the transport of substrates across the membrane by the hydrolysis of ATP. They typically have a conserved domain structure with two membrane-spanning domains that form the transport channel and two cytosolic nucleotide-binding domains (NBDs) that energize the transport reaction. Binding of ATP to the NBD monomer results in formation of a NBD dimer. Hydrolysis of the ATP drives the dissociation of the dimer. The thermodynamics of distinct steps in the ATPase cycle of GlcV, the NBD of the glucose ABC transporter of the extreme thermoacidophile Sulfolobus solfataricus, were studied by isothermal titration calorimetry using the wild-type protein and two mutants, which are arrested at different steps in the ATP hydrolytic cycle. The G144A mutant is unable to dimerize, while the E166A mutant is defective in dimer dissociation. The ATP, ADP, and AMP-PNP binding affinities, stoichiometries, and enthalpies of binding were determined at different temperatures. From these data, the thermodynamic parameters of nucleotide binding, NBD dimerization, and ATP hydrolysis were calculated. The data demonstrate that the ATP hydrolysis cycle of isolated NBDs consists of consecutive steps where only the final step of ADP release is energetically unfavorable. 相似文献
12.
H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB 总被引:1,自引:0,他引:1
下载免费PDF全文

The ABC transporter HlyB is a central element of the HlyA secretion machinery, a paradigm of Type I secretion. Here, we describe the crystal structure of the HlyB-NBD (nucleotide-binding domain) with H662 replaced by Ala in complex with ATP/Mg2+. The dimer shows a composite architecture, in which two intact ATP molecules are bound at the interface of the Walker A motif and the C-loop, provided by the two monomers. ATPase measurements confirm that H662 is essential for activity. Based on these data, we propose a model in which E631 and H662, highly conserved among ABC transporters, form a catalytic dyad. Here, H662 acts as a 'linchpin', holding together all required parts of a complicated network of interactions between ATP, water molecules, Mg2+, and amino acids both in cis and trans, necessary for intermonomer communication. Based on biochemical experiments, we discuss the hypothesis that substrate-assisted catalysis, rather than general base catalysis might operate in ABC-ATPases. 相似文献
13.
The heteroaggregate alpha-crystallin and homoaggregates of its subunits, alphaA- and alphaB-crystallins, function like molecular chaperones and prevent the aggregation of several proteins. Although modulation of the chaperone-like activity of alpha-crystallin by both temperature and chaotropic agents has been demonstrated in vitro, the mechanism(s) of its regulation in vivo have not been elucidated. The subunits of alpha-crystallin exchange freely, resulting in its dynamic and variable quaternary structure. Mixed aggregates of the alpha-crystallins and other mammalian small heat shock proteins (sHSPs) have also been observed in vivo. We have investigated the time-dependent structural and functional changes during the course of heteroaggregate formation by the exchange of subunits between homoaggregates of alphaA- and alphaB-crystallins. Native isoelectric focusing was used to follow the time course of subunit exchange. Circular dichroism revealed large tertiary structural alterations in the subunits upon subunit exchange and packing into heteroaggregates, indicating specific homologous and heterologous interactions between the subunits. Subunit exchange also resulted in quaternary structural changes as demonstrated by gel filtration chromatography. Interestingly, we found time-dependent changes in chaperone-like activity against the dithiothreitol-induced aggregation of insulin, which correlated with subunit exchange and the resulting tertiary and quaternary structural changes. Heteroaggregates of varying subunit composition, as observed during eye lens epithelial cell differentiation, generated by subunit exchange displayed differential chaperone-like activity. It was possible to alter chaperone-like activity of preexisting oligomeric sHSPs by alteration of subunit composition by subunit exchange. Our results demonstrate that subunit exchange and the resulting structural and functional changes observed could constitute a mechanism of regulation of chaperone-like activity of alpha-crystallin (and possibly other mammalian sHSPs) in vivo. 相似文献
14.
The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits 总被引:3,自引:0,他引:3
LPG2 (a gene involved in lipophosphoglycan assembly) encodes the Golgi GDP-Man transporter of the protozoan parasite Leishmania and is a defining member of a new family of eukaryotic nucleotide-sugar transporters (NSTs). Although NST activities are widespread, mammalian cells lack a GDP-Man NST, thereby providing an ideal heterologous system for probing the LPG2 structure and activity. LPG2 expression constructs introduced into either mammalian cells or a Leishmania lpg2(-) mutant conferred GDP-Man, GDP-Ara, and GDP-Fuc (in Leishmania only) uptake in isolated microsomes. LPG2 is the first NST to be associated with multiple substrate specificities. Uptake activity showed latency, exhibited an antiport mechanism of transport with GMP, and was susceptible to the anion transport inhibitor DIDS. The apparent K(m) for GDP-Man uptake was similar in transfected mammalian cells (12.2 microM) or Leishmania (6.9 microM). Given the evolutionary distance between protozoans and vertebrates, these data suggest that LPG2 functions autonomously to provide transporter activity. Using epitope-tagged LPG2 proteins, we showed the existence of hexameric LPG2 complexes by immunoprecipitation experiments, glycerol gradient centrifugation, pore-limited native gel electrophoresis, and cross-linking experiments. This provides strong biochemical evidence for a multimeric complex of NSTs, a finding with important implications to the structure and specificity of NSTs in both Leishmania and other organisms. Inhibition of essential GDP-Man uptake in fungal and protozoan systems offers an attractive target for potential chemotherapy. 相似文献
15.
16.
Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by four herbicides (2,4-D, atrazine, metolachlor and primisulfuron) and a herbicide safener (dichlormid) on the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect on gene expression varies with both chemicals and genes. The expression of ZmGST27 and ZmMRP1 was up-regulated by all five compounds, whereas that of ZmGT1 was increased by atrazine, metolachlor, primisulfuron and dichlormid, but not by 2,4-D. For all chemicals, the inducing effect was first detected on ZmGST27. The finding that ZmGT1 is activated alongside ZmGST27 and ZmMRP1 suggests that glutathione transporters are an important component in the xenobiotic detoxification system of plants. 相似文献
17.
The membrane-bound proteins of periplasmic permeases form a complex. Identification of the histidine permease HisQMP complex 总被引:19,自引:0,他引:19
R E Kerppola V K Shyamala P Klebba G F Ames 《The Journal of biological chemistry》1991,266(15):9857-9865
The membrane-bound proteins of periplasmic transport systems have been hypothesized to form a complex with relatively little experimental support. Here we present experimental evidence that HisQ, HisM, and HisP, the membrane-bound proteins of the periplasmic histidine transport system of Salmonella typhimurium, form such a complex. We have developed antibodies specific to each of these proteins to aid in their characterization. Extractions with urea, alkaline pH, or Triton X-114 show that HisQ and HisM are integral membrane proteins. By these tests HisP displays an unusual behavior, being associated with the membrane whether or not HisQ and HisM are present and despite its hydrophilic sequence. However, the nature of HisPs interaction with the membrane is shown to vary depending on the presence of HisQ and HisM. In their absence, HisP is somewhat peripherally associated with the membrane, while in their presence it binds much more tightly, indicating that it forms a complex in association with HisQ and HisM. This is demonstrated by the coimmunoprecipitation of all three proteins by antibodies directed against any one of them. Chemical cross-linking allowed the characterization of the subunit stoichiometry of the complex as two HisPs to one HisQ and one HisM. Within this complex all three proteins probably contact each other and the two HisPs form a dimer. We hypothesize that HisQ and HisM with their multiple membrane-spanning segments form a "channel" within which the HisP subunits are located. 相似文献
18.
Horn C Jenewein S Sohn-Bösser L Bremer E Schmitt L 《Journal of molecular microbiology and biotechnology》2005,10(2-4):76-91
Adaptation of microorganisms to changing osmotic conditions is a prerequisite for survival and cellular vitality for most microorganisms. In the Gram-positive soil bacterium Bacillus subtilis, five transport systems catalyze the uptake of compatible solutes across the plasma membrane that allow the growth of B. subtilis over a wide range of osmotic conditions. Focus of this review is the osmoprotectant uptake A (OpuA) transporter, a member of the family of substrate-binding protein (SBP)-dependent ATP-binding cassette (ABC) transporters that mediates the uptake of the compatible solutes glycine betaine and proline betaine. OpuA is composed of three subunits: a nucleotide-binding domain (OpuAA) located in the cytosol, a transmembrane domain (OpuAB), and a SBP (OpuAC), which binds glycine betaine and proline betaine with high specificity and targets it to OpuAB for ATP-dependent translocation across the plasma membrane. After a brief introduction in the field of bacterial osmoadaptation, we will summarize our recent findings about the biochemical and structural analysis of the components of the OpuA systems. Our studies covered both the isolated subunits of the OpuA transporter and initial investigations of the whole transporter in vitro. 相似文献
19.
Sodium-induced conformational changes in the glucose transporter of intestinal brush borders 总被引:6,自引:0,他引:6
Using brush-border membranes prepared from rabbit small intestine by Ca2+ precipitation and KSCN treatment, we have studied the kinetics and conformational changes of the glucose carrier. Na+ behaves as a competitive activator of glucose transport under zero-trans conditions. Phenyl isothiocyanate and fluorescein isothiocyanate (FITC) inhibit Na+-dependent transport in an irreversible but substrate-protectable manner. Vesicles pretreated with phenyl isothiocyanate in the presence of substrates were then selectively labeled at the glucose carrier with FITC. Competition experiments with Na+ and phlorizin or glucose indicated that FITC binds to the glucose site on the carrier. Carrier-bound FITC displays a saturable quenching of fluorescence in the presence of Na+. The K0.5 of the Na+-specific quench is 25 mM, which is similar to the apparent Km for Na+ activation of glucose transport. Two tyrosine group-specific reagents, N-acetylimidazole and tetranitromethane, inhibit glucose uptake and fluorescent quenching in a Na+-protectable fashion. FITC labeled a 75-kilodalton peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a substrate-sensitive manner. We conclude that Na+ binds to the glucose symporter of intestinal brush borders, a 75-kilodalton peptide, and this induces a rapid conformation change in the transporter which increases its affinity for D-glucose. 相似文献
20.