首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary l-proline uptake via the intestinal brush-borderIMINO carrier was tested for inhibition by 41 compounds which included sugars, N-methylated, -,-, - and -amino and imino acids, and heterocyclic analogs of pyrrolidine, piperidine and pyridine. Based on competitive inhibitor constants (apparentK/'s) we find that theIMINO carrier binding site interacts with molecules which possess a well-defined set of structural prerequisites. The ideal inhibitor must 1) be a heterocyclic nitrogen ring, 2) have a hydrophobic region, 3) be thel-stereoisomer of 4) an electronegative carbonyl group which is 5) separated by a one-carbon atom spacer from 6) an electropositive tetrahedral imino nitrogen with two H atoms. Finally, 7) the inhibitor conformation determined by dynamic ring puckering must position all these features within a critical domain. The two best inhibitors arel-pipecolate (apparentK/0.2mm) andl-proline (apparentK/0.3mm).  相似文献   

2.
Summary We previously reported that3H-folate uptake by rabbit jejunal brush-border membrane (BBM) vesicles was markedly stimulated by an outwardly directed OH gradient (pHin 7.7, pHout 5.5), inhibited by anion exchange inhibitors (DIDS, SITS, furosemide), and saturable (folateK m=0.19 m) suggesting carrier-mediated folate/OH exchange (or H+/folate cotransport). In the present study, the anion specificity of this transport process was examined. Under conditions of an outwardly directed OH gradient, DIDS-sensitive folate uptake wascis inhibited (>90%) by reduced folate analogues: dihydrofolate (IC50=0.40 m), folinic acid (IC50=0.50 m), 5-methyltetrahydrofolate (IC50=0.53 m), and (+)amethopterin (IC50=0.93 M). In contrast, 10 m (–)amethopterin had only a modest effect on folate uptake (18% inhibition) suggesting stereospecificity of the folate/OH exchanger. The nonpteridine compounds which are transported by the folate carrier in L1210 leukemic cells (phthalate, thiamine pyrophosphate, and PO 4 –3 ) did not inhibit jejunal folate uptake. Furthermore, folate uptake was not inhibited by SO 4 –2 (4mm) or oxalate (4mm) thereby distinguishing this carrier from the previously described intestinal SO 4 –2 /OH and oxalate/Cl exchangers. After BBM vesicles were loaded with3H-folate, the initial velocity of3H-folate efflux was stimulated by unlabeled folate in the efflux medium. The transstimulation of3H-folate efflux by unlabeled folate was furosemide (or DIDS) inhibitable and temperature sensitive. Half-maximal stimulation of furosemide-sensitive3H-folate efflux was observed with 0.25±0.05 m unlabeled folate, a concentration similar to theK m for folate uptake. These data suggest that folate-stimulated3H-folate efflux is mediated by the folate/OH exchanger. With the exception of (–) amethopterin, reduced folate analogues also transstimulated furosemide-sensitive3H-folate efflux in a concentration-dependent manner suggesting stereospecific transport of these analogues by the folate/OH exchanger. In summary, folate transport by the jejunal folate/OH exchanger demonstrates bothcis inhibition and transstimulation by reduced folate analogues, but not by other inorganic or organic anions suggesting bidirectional transport of folate and a high degree of anion specificity.  相似文献   

3.
Summary The sulfhydryl reagent 5, 5-dithiobis (2-nitrobenzoic acid) (DTNB) was used to study the functional role of an exofacial sulfhydryl group on the human erythrocyte hexose carrier. Above 1mm DTNB rapidly inhibited erythrocyte 3-O-methylglucose influx, but only to about half of control rates. Efflux was also inhibited, but to a lesser extent. Uptake inhibition was completely reversed by incubation and washing with 10mm cysteine, whereas it was only partially reduced by washing in buffer alone, suggesting both covalent and noncovalent interactions. The covalent thiol-reversible reaction of DTNB occurred on the exofacial carrier, since (i) penetration of DTNB into cells was minimal, (ii) blockade of potential uptake via the anion transporter did not affect DTNB-induced hexose transport inhibition, and (iii) DTNB protected from transport inhibition by the impermeant sulfhydryl reagent glutathione-maleimide-I. Maltose at 120mm accelerated the covalent transport inhibition induced by DTNB, whereas 6.5 m cytochalasin B had the opposite effect, indicating under the one-site carrier model that the reactive sulfhydryl is on the outward-facing carrier but not in the substrate-binding site. In contrast to glutathione-maleimide-I, however, DTNB did not restrict the ability of the carrier to reorient inwardly, since it did not affect equilibrium cytochalasin B binding. Thus, carrier conformation determines exposure of the exofacial carrier sulfydryl, but reaction of this group may not always lock the carrier in an outward-facing conformation.  相似文献   

4.
Summary A simple procedure was developed for the isolation of a sarcolemma-enriched membrane preparation from homogenates of bullfrog (Rana catesbeiana) heart. Crude microsomes obtained by differential centrifugation were fractionated in Hypaque density gradients. The fraction enriched in surface membrane markers consisted of 87% tightly sealed vesicles. The uptake of86Rb+ by the preparation was measured in the presence of an opposing K+ gradient using a rapid ion exchange technique. At low extravesicular Rb+ concentrations, at least 50% of the uptake was blocked by addition of 1mm ouabain to the assay medium. Orthovanadate (50 m), ADP (2.5mm), or Mg (1mm) were also partial inhibitors of Rb+ uptake under these conditions, and produced a complete block of Rb+ influx in the presence of 1mm ouabain. When86Rb+ was used as a tracer of extravesicular K+ (Rb 0 + 40 m K 0 + =0.1–5mm) a distinct uptake pathway emerged, as detected by its inhibition by 1mm Ba2+ (K 0.5=20 m). At a constant internal K+ concentration (K in + =50mm) the magnitude of the Ba2+-sensitive K+ uptake was found to depend on K 0 + in a manner that closely resembles the K+ concentration dependence of the background K+ conductance (I Kl) observed electrophysiologically in intact cardiac cells. We conclude that K+ permeates passively this preparation through two distinct pathways, the sodium pump and a system identifiable as the background potassium channel.  相似文献   

5.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K 1 =1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK M =8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion.  相似文献   

6.
Analysis in mouse brain slices of the uptake of acetyl-l-[N-methyl-14C]carnitine with time showed it to be concentrative, and kinetic analysis gave aK m of 1.92 mM and aV max of 1.96 mol/min per ml, indicating the presence of a low-affinity carrier system. The uptake was energy-requiring and sodium-dependent, being inhibited in the presence of nitrogen (absence of O2), sodium cyanide, low temperature (4°C), and ouabain, and in the absence of Na+. The uptake of acetyl-l-carnitine was not strictly substrate-specific; -butyrobetaine,l-carnitine,l-DABA, and GABA were potent inhibitors, hypotaurine andl-glutamate were moderate inhibitors, and glycine and -alanine were only weakly inhibitory. In vivo, acetyl-l-carnitine transport across the blood-brain barrier had a brain uptake index of 2.4±0.2, which was similar to that of GABA. These results indicate an affinity of acetyl-l-carnitine to the GABA transport system.  相似文献   

7.
Summary Marine mussels can accumulate amino acids from seawater into the epithelial cells of the gill against chemical gradients in excess of 5×106 to 1. Uptake of both alanine and taurine into gill tissue isolated fromMytilus californianus was found to be dependent upon Na+ in the external solution. Uptake of these amino acids was described by Michaelis-Menten kinetics, and a reduction in external [Na+] (from 425 to 213mm) increased the apparent Michaelis constants (alanine, from 8 to 17 m; taurine, from 4 to 39 m) without a significant influence on theJ max's of these processes. Fivemm harmaline, an inhibitor of Na-cotransport processes in many systems, reduced both alanine and taurine uptake by more than 95%; this inhibition appeared to be competitive in nature, with an apparentK i of 43 m for the interaction with alanine uptake. Increasing the external [Na+] from 0 to 510mm produced a sigmoid activation of alanine and taurine uptake withK Na's of approximately 325mm. The apparent Hill coefficients for this activation were 7.3 and 7.4 for alanine and taurine, respectively. These data are consistent with uptake mechanisms which require comparatively high concentrations of Na+ to activate transport, and which couple several Na+ ions to the transport of each amino acid. These characteristics, in conjunction with the previously demonstrated low passive permeability of the apical membrane to amino acids, result in systems capable of i) accumulating amino acids from seawater to help meet the nutritional needs of this animal, and ii) maintaining the high intracellular amino-acid concentrations associated with volume regulation in the gill.  相似文献   

8.
Summary The experiments reported in this paper aim at characterizing the carboxylic acid transport, the interactions of pyruvate and citrate with their transport sites and specificity. The study of these carriers was performed using isotopic solutes for the influx measurements in brush-border membrane vesicles under zerotrans conditions where the membrane potential was abolished with KCl preloading with valinomycin or equilibrium exchange conditions and =0.Under zerotrans condition and =0, the influence of pyruvate concentrations on its initial rates of transport revealed the existence of two families of pyruvate transport sites, one with a high affinity for pyruvate (K t =88 m) and a low affinity for sodium (K t =57.7mm) (site I), the second one with a low affinity for pyruvate (K t =6.1mm) and a high affinity for sodium (K t =23.9mm) (site II). The coupling factor [Na]/[pyruvate] stoichiometry were determined at 0.25mm and 8mm pyruvate and estimated at 1.8 for site I, and 3 when the first and the second sites transport simultaneously.Under chemical equilibrium (0) single isotopic labeling, transport kinetics of pyruvate carrier systems have shown a double interaction of pyruvate with the transporter; the sodium/pyruvate stoichiometry also expressed according to a Hill plot representation wasn=1.7. The direct method of measuring Na+/pyruvate stoichiometry from double labeling kinetics and isotopic exchange, for a time course, gives an=1.67.Studies of transport specificity, indicate that the absence of inhibition of lactate transport by citrate and the existence of competitive inhibition of lactate and citrate transports by pyruvate leads to the conclusion that the low pyruvate affinity site can be attributed to the citrate carrier (tricarboxylate) and the high pyruvate affinity site to the lactate carrier (monocarboxylate).  相似文献   

9.
Summary Na–K–Cl cotransport stoichiometry and affinities for Na, K and Cl were determined in flounder intestine. Measurement of simultaneous NaCl and RbCl influxes resulted in ratios of 2.2 for Cl/Na and 1.8 for Cl/Rb. The effect of Na and Rb on Rb influx showed first order kinetics withK 1/2 values of 5 and 4.5mm and Hill coefficients of 0.9 and 1.2, respectively. The effect of Cl on rubidium influx showed a sigmoidal relationship withK 1/2 of 20mm and a Hill coefficient of 2.0. The effects of variations in Na and Cl concentration on short-circuit current (I sc) were also determined. TheK 1/2 for Na was 7mm with a Hill coefficient of 0.9 and theK 1/2 for Cl was 46mm with a Hill coefficient of 1.9. Based on the simultaneous influx measurements, a cotransport stoichiometry of 1Na1K2Cl is concluded. The Hill coefficients for Cl suggest a high degree of cooperativity between Cl binding sites. Measurements of the ratio of net Na and Cl transepithelial fluxes under short-circuit conditions (using a low Na Ringer solution to minimize the passive Na flux) indicate that the Cl/Na flux ratio is approximately 21. Therefore Na recycling from serosa to mucosa does not significantly contribute to theI sc. Addition of serosal ouabain (100 m) inhibited Rb influx, indicating that Na–K–Cl cotransport is inhibited by ouabain. This finding suggests that a feedback mechanism exists between the Na–K-ATPase on the basolateral membrane and the apical Na–K–2Cl cotransporter.  相似文献   

10.
Summary The effect of chloride on 4,4-dibenzamido-2,2-disulfonic stilbene (DBDS) binding to band 3 in unsealed red cell ghost membranes was studied in buffer [NaCl (0 to 500mm) + Na citrate] at constant ionic strength (160 or 600mm). pH 7.4, 25°C. In the presence of chloride, DBDS binds to a single class of sites on band 3. At 160mm ionic strength, the dissociation constant of DBDS increases linearly with chloride concentration in the range [Cl]=450mm. The observed rate of DBDS binding to ghost membranes, as measured by fluorescence stopped-flow kinetic experiments, increases with chloride concentration at both 160 and 600mm ionic strength. The equilibrium and kinetic results have been incorporated into the following model of the DBDS-band 3 interaction: The equilibrium and rate constants of the model at 600mm ionic strength areK 1=0.67±0.16 m,k 2=1.6±0.7 sec–1,k –2=0.17±0.09 sec–1,K 1=6.3±1.7 m,k 2=9±4 sec–1 andk –2=7±3 sec–1. The apparent dissociation constants of chloride from band 3,K Cl, are 40±4mm (160mm ionic strength) and 11±3mm (600mm ionic strength). Our results indicate that chloride and DBDS have distinct, interacting binding sites on band 3.  相似文献   

11.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

12.
Summary In order to investigate whether the loop diuretic sensitive, sodium-chloride cotransport system described previously in shark rectal gland is in fact a sodium-potassium chloride cotransport system, plasma membrane vesicles were isolated from rectal glands ofSqualus acanthias and sodium and rubidium uptake were measured by a rapid filtration technique. In addition, the binding of N-methylfurosemide to the membranes was investigated. Sodium uptake into the vesicles in the presence of a 170mm KCl gradient was initially about five-fold higher than in the presence of a 170mm KNO3 gradient. In the presence of chloride, sodium uptake was inhibited 56% by 0.4mm bumetanide and 40% by 0.8mm N-methylfurosemide. When potassium chloride was replaced by choline chloride or lithium chloride, sodium uptake decreased to the values observed in the presence of potassium nitrate. Replacement of potassium chloride by rubidium chloride, however, did not change sodium uptake. Initial rubidium uptake into the membrane vesicles was about 2.5-fold higher in the presence of a 170mm NaCl gradient than in the presence of a 170mm NaNO3 gradient. The effect of chloride was completely abolished by 0.4mm bumetanide. Replacement of the sodium chloride gradient by a lithium chloride gradient decreased rubidium uptake by about 40%; replacement by a choline chloride gradient reduced the uptake even further. Rubidium uptake was also strongly inhibited by potassium. Sodium chloride dependence and bumetanide inhibition of rubidium flux were also found in tracer exchange experiments in the absence of salt gradients. The isolated plasma membranes bound3[H]-N-methylfurosemide in a dose-dependent manner. In Scatchard plots, one saturable component could be detected with an apparentK D of 3.5×10–6 m and a number of sitesn of 104 pmol/mg protein. At 0.8 m, N-methylfurosemide binding decreased 51% when sodium-free or low-potassium media were used. The same decrease was observed when the chloride concentration was increased from 200 to 600mm or when 1mm bumetanide or furosemide were added to the incubation medium. These studies indicate that the sodium-chloride cotransport system described previously in the rectal gland is in fact a sodium-potassium chloride cotransport system. It is postulated that this transport system plays an essential role in the secondary active chloride secretion of the rectal gland.  相似文献   

13.
Summary Oxalate-supported Ca accumulation by the sarcoplasmic reticulum (SR) of chemically skinned mammalian skeletal muscle fibers is activated by MgATP and Ca2+ and partially inhibited by caffeine. Inhibition by caffeine is greatest when Ca2+ exceeds 0.3 to 0.4 m, when free ATP exceeds 0.8 to 1mm, and when the inhibitor is present from the beginning of the loading period rather than when it is added after Ca oxalate has already begun to precipitate within the SR. Under the most favorable combination of these conditions, this effect of caffeine is maximal at 2.5 to 5mm and is half-maximal at approximately 0.5mm. For a given concentration of caffeine, inhibition decreases to one-half of its maximum value when free ATP is reduced to 0.2 to 0.3mm. Varying free Mg2+ (0.1 to 2mm) or MgATP (0.03 to 10mm) has no effect on inhibition. Average residual uptake rates in the presence of 5mm caffeine atpCa 6.4 range from 32 to 70% of the control rates in fibers from different animals. The extent of inhibition in whole-muscle homogenates is similar to that observed in skinned fibers, but further purification of SR membranes by differential centrifugation reduces their ability to respond to caffeine. In skinned fibers, caffeine does not alter the Ca2+ concentration dependence of Ca uptake (K 0.5, 0.5 to 0.8 m; Hilln, 1.5 to 2.1). Reductions in rate due to caffeine are accompanied by proportional reductions in maximum capacity of the fibers, and this configuration can be mimicked by treating fibers with the ionophore A23187. Caffeine induces a sustained release of Ca from fibers loaded with Ca oxalate. However, caffeine-induced Ca release is transient when fibers are loaded without oxalate. The effects of caffeine on rate and capacity of Ca uptake as well as the sustained and transient effects on uptake and release observed under different conditions can be accounted for by a single mode of action of caffeine: it increases Ca permeability in a limited population of SR membranes, and these membranes coexist with a population of caffeine-insensitive membranes within the same fiber.  相似文献   

14.
Summary These experiments were designed to determine whether proton-driven86Rb uptake was present in apical membrane vesicles prepared from rat ileum. The uptake of86Rb was approximately 300 to 350% greater in the presence of a 100-fold H+ gradient than in its absence and was greater at 1, 2 and 5 minutes (overshoot) than that at 90 minutes. Proton-driven86Rb uptake was decreased by 20% in TMA-nitrate compared to that in TMA-gluconate. 0.3mm amiloride did not significantly inhibit proton-driven86Rb uptake; in contrast, proton-driven22Na uptake was significantly inhibited by 0.3mm amiloride by 34%. Similarly, 25mm KCl inhibited proton-driven86Rb uptake more than that of22Na, while the inhibition of proton-driven22Na uptake by 25mm NaCl was greater than that of86Rb. In additional studies intravesicular acidification measured by acridine orange fluorescence was demonstrated in the presence of an out-wardly directed K gradient. These studies demonstrate that a proton gradient stimulates86Rb uptake and a K gradient induces intravesicular acidification; and that these fluxes are mediated by a K/H exchange distinct from Na/H exchange which is also present in this membrane. We conclude that a specific exchange process for K/H is located in ileal apical membrane vesicles.  相似文献   

15.
Summary Sodium (22Na) transport was studied in a basolateral membrane vesicle preparation from rabbit parotid. Sodium uptake was markedly dependent on the presence of both K+ and Cl in the extravesicular medium, being reduced 5 times when K+ was replaced by a nonphysiologic cation and 10 times when Cl was replaced by a nonphysiologic anion. Sodium uptake was stimulated by gradients of either K+ or Cl (relative to nongradient conditions) and could be driven against a sodium concentration gradient by a KCl gradient. No effect of membrane potentials on KCl-dependent sodium flux could be detected, indicating that this is an electroneutral process. A KCl-dependent component of sodium flux could also be demonstrated under equuilibrium exchange conditions, indicating a direct effect of K+ and Cl on the sodium transport pathway. KCl-dependent sodium uptake exhibited a hyperbolic dependence on sodium concentration consistent with the existence of a single-transport system withK m =3.2mm at 80mm KCl and 23°C. Furosemide inhibited this transporter withK 0.5=2×10–4 m (23°C). When sodium uptake was measured as a function of potassium and chloride concentrations a hyperbolic dependence on [K] (Hill coefficient =1.31±0.07) were observed, consistent with a Na/K/Cl stoichiometry of 112. Taken together these data provide strong evidence for the electroneutral coupling of sodium and KCl movements in this preparation and strongly support the hypothesis that a Na+/K+/Cl cotransport system thought to be associated with transepithelial chloride and water movements in many exocrine glands is present in the parotid acinar basolateral membrane.  相似文献   

16.
Summary To study Cl conductive and cotransport mechanisms, primary cultures of canine tracheal cells were grown to confluency on thin glass cover slips and on porous filters. Transepithelial resistance was >100 ·cm2, and short circuit current (I sc=2–20 A/cm2), representing active secretion of Cl, increased >threefold with addition of 10 m isoproterenol to the serosal solution. Cells made transiently permeable in hypotonic solution were loaded with the Cl-sensitive fluorophore 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) (5mm, 4 min, 150 mOsm). The electrical properties of the cell monolayers were not altered by the loading procedure. Intracellular SPQ fluorescence was monitored continuously by epifluorescence microscopy (excitation 360±5 nm, emission>410 nm). SPQ leakage from the cells was <10% in 60 min at 37°C. Intracellular calibration of SPQ fluorescencevs. [Cl] (0–90mm) was carried out using high-K buffers containing the ionophores nigericin (5 m) and tributyltin (10 m); SPQ fluorescence was quenched with a Stern-Volmer constant of 13m –1. Intracellular Cl activity was 43±4mm. Cl flux was measured in response to addition and removal of 114mm Cl from the bathing solution. Addition of 10 m isoproterenol increased Cl efflux from 0.10 to 0.27mm/sec. The increase was inhibited by the Cl-channel blocker diphenylamine-2-carboxylic acid (1mm). In the absence of isoproterenol, removal of external Na or addition of 0.5mm furosemide, reduced Cl influx by >fourfold. In ouabain-treated monolayers, removal of external K in the presence of 5mm barium diminished Cl influx by >twofold, suggesting that Cl entry is in part K dependent. These results establish an accurate optical method for the realtime measurement of intracellular Cl activity in tracheal cells that does not require an electrically tight cell monolayer. The data demonstrate the presence of an isoproterenol-regulated Cl channel and a furosemide-sensitive cation-coupled transport mechanism.  相似文献   

17.
The amino acid leucine was transported by the cyanobacterium Anabaena variabilis. The K m for transport was 10.8 M; the V max was 8.7 nmoles min–1 mg–1 chlorophyll a. Transport of leucine was energy dependent: uptake of leucine was inhibited in the dark, and by DCMU and cyanide. Transport was neither dependent on nor enhanced by Na+. Prior growth of cells with leucine did not repress transport of [14C]-leucine. Alanine, glycine, valine, and methionine were strong competitive inhibitors of leucine uptake; serine, threonine, isoleucine, norleucine, and d-alanine competitively inhibited to a lesser degree. Other amino acids or amino acid analogues, including d-leucine, -aminoisobutyrate, and d-serine did not inhibit the transport of leucine.Abbreviations Chl a chlorophyll a - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - TES N-tris(hydroxymethyl)-2-aminoethane-sulfonic acid - TCA trichloroacetic acid - Tris N-tris(hydroxymethyl)aminoethane  相似文献   

18.
Summary The Na/K/Cl-dependent component of the binding of the loop diuretic bumetanide to basolateral membrane vesicles from the rabbit parotid is studied. A Scatchard analysis indicates that this binding is due to a single high-affinity site withK D =3.2±0.3 m (n=9) at 100mm sodium, 100mm potassium and 5mm chloride. When KCl-dependent22Na transport and tracer [3H]-bumetanide binding are monitored simultaneously as a function of (unlabeled) bumetanide concentration it is found that theK 0.5 for bumetanide inhibition of both processes are identical indicating that the high-affinity bumetanide binding site studied here is identical with a bumetanide-inhibitory site on the Na/K/Cl cotransport system previously identified in this preparation (R.J. Turner, J.N. George and B.J. Baum,J. Membrane Biol. 94:143–152, 1986). High-affinity bumetanide binding exhibits a hyperbolic dependence on both [Na] and [K] consistent with Na/bumetanide and K/bumetanide binding stoichiometries of 11 andK 0.5 values of approximately 33mm for sodium and 23mm for potassium. In contrast, the dependence on [Cl] is biphasic, with bumetanide binding increasing from 0 to 5mm chloride and decreasing toward baseline levels thereafter. Scatchard analysis of this latter inhibitory effect of chloride indicates a competitive interaction with bumetanide in agreement with earlier indications that bumetanide inhibits Na/K/Cl cotransport at a chloride site. However, studies of the effects of various anions on bumetanide binding and22Na transport show a poor correlation between the specificities of these two processes, suggesting that the inhibitory chloride site is not a chloride transport site.  相似文献   

19.
Summary Choline is a quaternary ammonium compound that is normally reabsorbed by the renal proximal tubule, despite its acknowledged role as a substrate for the renal organic cation (OC) secretory pathway. The basis for choline reabsorption was examined in studies of transport in rabbit renal brush-border membrane vesicles (BBMV). Although an outwardly directed H+ gradient (pH 6.0in 7.5out) stimulated uptake of tetraethylammonium (TEA), a model substrate of the OC/H+ exchanger in renal BBMV, it had no effect on uptake of 1 m choline. A 5 mm trans concentration gradient of choline did, however, drive countertransport of both TEA and choline, although trans TEA had no effect on choline accumulation in BBMV. A 20 mm concentration of unlabeled choline blocked uptake of both choline and TEA by >85%, whereas 20 mm TEA blocked only TEA uptake. The kinetics of choline uptake into vesicles preloaded with 1 mm unlabeled choline appeared to involve two, saturable transport processes, one of high affinity for choline (K t of 97 m) and a second of low affinity (K t of 10 mm), the latter presumably reflecting a weak interaction of choline with the OC/H+ exchanger. An inside-negative electrical PD stimulated the rate of uptake and supported the transient concentrative accumulation of choline in BBMV. The high affinity transporter showed a marked specificity for choline and closely related analogues. A model of the molecular determinants of substrate-transporter interaction is described. We conclude that the electrogenic high affinity pathway plays a central role in renal reabsorption of choline.We thank Dr. William Dantzler for helpful discussions. This work was supported by grants from the National Institutes of Health (PO1 DK41006) and the Arizona Disease Control Research Commission (82-0701).  相似文献   

20.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号