首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA(Val). This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

2.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNAVal. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

3.
4.
Mitochondrial DNA (mtDNA) sequence variants segregate in mutation and tissue-specific manners, but the mechanisms remain unknown. The segregation pattern of pathogenic mtDNA mutations is a major determinant of the onset and severity of disease. Using a heteroplasmic mouse model, we demonstrate that Gimap3, an outer mitochondrial membrane GTPase, is a critical regulator of this process in leukocytes. Gimap3 is important for T cell development and survival, suggesting that leukocyte survival may be a key factor in the genetic regulation of mtDNA sequence variants and in modulating human mitochondrial diseases.  相似文献   

5.
Sequence analysis of the entire mitochondrial genome in Parkinson's disease   总被引:5,自引:0,他引:5  
The pathogenesis of Parkinson's disease (PD) is largely unknown. Indirect evidence suggests that mutations in mitochondrial DNA (mtDNA) might play a role, but previous studies have not consistently associated any specific mutations with PD. However, these studies have generally been confined to limited areas of the mitochondrial genome. We therefore sequenced the entire mitochondrial genome from substantia nigra of 8 PD and 9 control subjects. Several sequence variants were distributed differently between PD and control subjects, but all were previously reported polymorphisms. Several secondary LHON mutations were found, as well as a number of novel missense mutations, but all were rare and did not differ between PD and control subjects. Finally, PD and control subjects did not differ in the total number of all mutations, nor the total number of missense mutations. Thus, mtDNA involvement in PD, if any, is likely to be complex and should be reconsidered carefully.  相似文献   

6.
Wolfram or DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy and Deafness) syndrome, which has long been known as an autosomal-recessive disorder, has recently been proposed to be a mitochondrial-mediated disease with either a nuclear or a mitochondrial genetic background. The phenotypic characteristics of the syndrome resemble those found in other mitochondrial (mt)DNA mediated disorders such as Leber's hereditary optic neuropathy (LHON) or maternally inherited diabetes and deafness (MIDD). Therefore, we looked for respective mtDNA alterations in blood samples from 7 patients with DIDMOAD syndrome using SSCP-analysis of PCR-amplified fragments, encompassing all mitochondrial ND and tRNA genes, followed by direct sequencing. Subsequently, we compared mtDNA variants identified in this disease group with those detected in a group of LHON patients (n = 17) and in a group of 69 healthy controls. We found that 4/7 (57%) DIDMOAD patients harbored a specific set of point mutations in tRNA and ND genes including the so-called class II or secondary LHON mutations at nucleotide positions (nps) 4216 and 4917 (haplogroup B). In contrast, LHON-patients were frequently (10/17, 59%) found in association with another cluster of mtDNA variants including the secondary LHON mutations at nps 4216 and 13708 and further mtDNA polymorphisms in ND genes (haplogroup A), overlapping with haplogroup B only by variants at nps 4216 and 11251. The frequencies of both haplogroups were significantly lower in the control group versus the respective disease groups. We propose that haplogroup B represents a susceptibility factor for DIDMOAD which, by interaction with further exogeneous or genetic factors, might increase the risk for disease. (Mol Cell Biochem 174: 209–213, 1997)  相似文献   

7.
Mutations in mitochondrial DNA (mtDNA) may result in various pathological processes. Detection of mutant mtDNAs is a problem for diagnostic practice that is complicated by heteroplasmy – a phenomenon of the inferring presence of at least two allelic variants of the mitochondrial genome. Also, the level of heteroplasmy largely determines the profile and severity of clinical manifestations. Here we discuss detection of mutations in heteroplasmic mtDNA using up-todate methods that have not yet been introduced as routine clinical assays. These methods can be used for detecting mutations in mtDNA to verify diagnosis of “mitochondrial disease”, studying dynamics of mutant mtDNA in body tissues of patients, as well as investigating structural features of mtDNAs. Original data on allele-specific discrimination of m.11778G>A mutation by droplet digital PCR are presented, which demonstrate an opportunity for simultaneous detection and quantitative assessment of mutations in mtDNAs.  相似文献   

8.
Mitochondrial disorders are by far the most genetically heterogeneous group of diseases, involving two genomes, the 16.6 kb mitochondrial genome and ~ 1500 genes encoded in the nuclear genome. For maternally inherited mitochondrial DNA disorders, a complete molecular diagnosis requires several different methods for the detection and quantification of mtDNA point mutations and large deletions. For mitochondrial disorders caused by autosomal recessive, dominant, and X-linked nuclear genes, the diagnosis has relied on clinical, biochemical, and molecular studies to point to a group of candidate genes followed by stepwise Sanger sequencing of the candidate genes one-by-one. The development of Next Generation Sequencing (NGS) has revolutionized the diagnostic approach. Using massively parallel sequencing (MPS) analysis of the entire mitochondrial genome, mtDNA point mutations and deletions can be detected and quantified in one single step. The NGS approach also allows simultaneous analyses of a group of genes or the whole exome, thus, the mutations in causative gene(s) can be identified in one-step. New approaches make genetic analyses much faster and more efficient. Huge amounts of sequencing data produced by the new technologies brought new challenges to bioinformatics, analytical pipelines, and interpretation of numerous novel variants. This article reviews the clinical utility of next generation sequencing for the molecular diagnoses of complex dual genome mitochondrial disorders.  相似文献   

9.
Mutations in mitochondrial DNA (mtDNA) may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We “shotgun” sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche''s 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300× average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20× while heteroplasmic variants required >200× coverage. Several Sanger “misses” were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease.  相似文献   

10.
Wong LJ 《Mitochondrion》2007,7(1-2):45-52
Although mitochondrial disorders are increasingly being recognized, confirming a specific diagnosis remains a great challenge due to the genetic and clinical heterogeneity of the disease. The heteroplasmic nature of most pathogenic mitochondrial DNA mutations and the uncertainties of the clinical significance of novel mutations pose additional complications in making a diagnosis. Suspicion of mitochondrial disease among patients with multiple, seemingly unrelated neuromuscular and multi-system disorders should ideally be confirmed by the finding of deleterious mutations in genes involving mitochondrial biogenesis and functions. The genetics are complex, as the primary mutation can be either in the nuclear or the mitochondrial DNA (mtDNA). MtDNA mutations are often maternally inherited, but can also be sporadic or secondary to mutations in nuclear-encoded mitochondrial-targeted genes. Several well-defined clinical syndromes associated with specific mutations have been described, yet the genotype-phenotype correlation is often unclear and most patients do not fit within any defined syndrome and even within a family the expressivity of the disease can be extremely variable. This article describes examples representing diagnostic challenges of mitochondrial diseases that include the limitations of the mutation detection method, the occurrence of mitochondrial disease in families with another known neuromuscular disorder, atypical clinical presentation, the lack of correlation between the degree of mutant heteroplasmy and the severity of the disease, variable penetrance, and nuclear gene defects causing mtDNA depletion.  相似文献   

11.
Mitochondrial DNA (mtDNA) mutations have been implicated in various age-related diseases. To further clarify the role of mtDNA variants in age-related hearing impairment (ARHI), we determined the DNA sequence of the entire mitochondrial genome of 400 individuals using the Affymetrix Human Mitochondrial Resequencing Array. These were the 200 worst hearing and the 200 best hearing from a collection of 947 Belgian samples. We performed association tests with individual mitochondrial variants, comparison of the mutation load, and association with European haplogroups and their interaction with environmental risk factors. We also tested the influence of rare variants on ARHI. None of these tests showed any association with ARHI.  相似文献   

12.
Many lines of evidence implicate mitochondria in phenotypic variation: (a) rare mutations in mitochondrial proteins cause metabolic, neurological, and muscular disorders; (b) alterations in oxidative phosphorylation are characteristic of type 2 diabetes, Parkinson disease, Huntington disease, and other diseases; and (c) common missense variants in the mitochondrial genome (mtDNA) have been implicated as having been subject to natural selection for adaptation to cold climates and contributing to "energy deficiency" diseases today. To test the hypothesis that common mtDNA variation influences human physiology and disease, we identified all 144 variants with frequency >1% in Europeans from >900 publicly available European mtDNA sequences and selected 64 tagging single-nucleotide polymorphisms that efficiently capture all common variation (except the hypervariable D-loop). Next, we evaluated the complete set of common mtDNA variants for association with type 2 diabetes in a sample of 3,304 diabetics and 3,304 matched nondiabetic individuals. Association of mtDNA variants with other metabolic traits (body mass index, measures of insulin secretion and action, blood pressure, and cholesterol) was also tested in subsets of this sample. We did not find a significant association of common mtDNA variants with these metabolic phenotypes. Moreover, we failed to identify any physiological effect of alleles that were previously proposed to have been adaptive for energy metabolism in human evolution. More generally, this comprehensive association-testing framework can readily be applied to other diseases for which mitochondrial dysfunction has been implicated.  相似文献   

13.
The well-established manifestation of mitochondrial mutations in functional cardiac disease (e.g., mitochondrial cardiomyopathy) prompted the hypothesis that mitochondrial DNA (mtDNA) sequence and/or copy number (mtDNAcn) variation contribute to cardiac defects in congenital heart disease (CHD). MtDNAcns were calculated and rare, non-synonymous mtDNA mutations were identified in 1,837 CHD-affected proband-parent trios, 116 CHD-affected singletons, and 114 paired cardiovascular tissue/blood samples. The variant allele fraction (VAF) of heteroplasmic variants in mitochondrial RNA from 257 CHD cardiovascular tissue samples was also calculated. On average, mtDNA from blood had 0.14 rare variants and 52.9 mtDNA copies per nuclear genome per proband. No variation with parental age at proband birth or CHD-affected proband age was seen. mtDNAcns in valve/vessel tissue (320 ± 70) were lower than in atrial tissue (1,080 ± 320, p = 6.8E?21), which were lower than in ventricle tissue (1,340 ± 280, p = 1.4E?4). The frequency of rare variants in CHD-affected individual DNA was indistinguishable from the frequency in an unaffected cohort, and proband mtDNAcns did not vary from those of CHD cohort parents. In both the CHD and the comparison cohorts, mtDNAcns were significantly correlated between mother-child, father-child, and mother-father. mtDNAcns among people with European (mean = 52.0), African (53.0), and Asian haplogroups (53.5) were calculated and were significantly different for European and Asian haplogroups (p = 2.6E?3). Variant heteroplasmic fraction (HF) in blood correlated well with paired cardiovascular tissue HF (r = 0.975) and RNA VAF (r = 0.953), which suggests blood HF is a reasonable proxy for HF in heart tissue. We conclude that mtDNA mutations and mtDNAcns are unlikely to contribute significantly to CHD risk.  相似文献   

14.
To test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP synthase (MT-ATP6) gene that were detected only in patients but not in controls were suggested to be slightly deleterious, because (1) their original amino acid residues (AA) were highly conserved and (2) the physicochemical differences between the original and altered AA were relatively high. In addition, we detected three novel heteroplasmic variants that were potentially pathogenic. Although functional analysis is needed, rare variants in the mtDNA may convey susceptibility to schizophrenia.  相似文献   

15.
Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.  相似文献   

16.
Recent sequencing of the Chinese hamster ovary (CHO) cell and Chinese hamster genomes has dramatically advanced our ability to understand the biology of these mammalian cell factories. In this study, we focus on the powerhouse of the CHO cell, the mitochondrion. Utilizing a high-resolution next generation sequencing approach we sequenced the Chinese hamster mitochondrial genome for the first time and surveyed the mutational landscape of CHO cell mitochondrial DNA (mtDNA). Depths of coverage ranging from ~3,319X to 8,056X enabled accurate identification of low frequency mutations (>1%), revealing that mtDNA heteroplasmy is widespread in CHO cells. A total of 197 variants at 130 individual nucleotide positions were identified across a panel of 22 cell lines with 81% of variants occurring at an allele frequency of between 1% and 99%. 89% of the heteroplasmic mutations identified were cell line specific with the majority of shared heteroplasmic SNPs and INDELs detected in clones from 2 cell line development projects originating from the same host cell line. The frequency of common predicted loss of function mutations varied significantly amongst the clones indicating that heteroplasmic mtDNA variation could lead to a continuous range of phenotypes and play a role in cell to cell, production run to production run and indeed clone to clone variation in CHO cell metabolism. Experiments that integrate mtDNA sequencing with metabolic flux analysis and metabolomics have the potential to improve cell line selection and enhance CHO cell metabolic phenotypes for biopharmaceutical manufacturing through rational mitochondrial genome engineering.  相似文献   

17.
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.  相似文献   

18.
Mitochondrial DNA (mtDNA) is known for its high frequencies of polymorphisms and mutations. The non-coding displacement (D)-loop, especially a mononucleotide repeat (poly-C) between 303 and 315 nucleotides (D310), has been recently identified as a frequent hotspot of mutations in human neoplasia, including breast cancer. To further explore the sequence variations of mitochondrial D-loop region in familial breast cancer and their possible associations with breast cancer risk, PCR-SSCP and direct DNA sequencing methods were used to detect the variants of the mtDNA D-Loop in 23 familial breast cancer patients as well as three high-risk cancer families. Compared to that in sporadic breast tumors (53.3%, 16/30) and healthy blood donors (6.7%, 2/30), we identified a total of 126 sequence alterations in 23/23 (100%) of familial breast cancer patients, including eight novel nucleotide variants. Among these changes, A to G at nt.263, T to C at nt.489, T to C at nt.310, TC insertion at nt.311, CA deletion at nt.522, and C to G at nt.527 were highly frequent ones. In addition, among three high-risk cancer families, we found that individuals affected with breast cancer harbored more mtDNA sequence variants in mtDNA D310 area than other affected family members. Together, our data indicate that sequence variants within the mtDNA D-Loop region are frequent events in Chinese familial breast cancer patients. Some of these nucleotide abnormalities, particularly those in D310 segment, might be involved in the breast carcinogenesis and could be included in a panel of molecular biomarkers for cancer susceptibility early-detection strategy.  相似文献   

19.
Leber hereditary optic neuropathy (LHON) is due primarily to one of three common point mutations of mitochondrial DNA (mtDNA), but the incomplete penetrance implicates additional genetic or environmental factors in the pathophysiology of the disorder. Both the 11778G-->A and 14484T-->C LHON mutations are preferentially found on a specific mtDNA genetic background, but 3460G-->A is not. However, there is no clear evidence that any background influences clinical penetrance in any of these mutations. By studying 3,613 subjects from 159 LHON-affected pedigrees, we show that the risk of visual failure is greater when the 11778G-->A or 14484T-->C mutations are present in specific subgroups of haplogroup J (J2 for 11778G-->A and J1 for 14484T-->C) and when the 3460G-->A mutation is present in haplogroup K. By contrast, the risk of visual failure is significantly less when 11778G-->A occurs in haplogroup H. Substitutions on MTCYB provide an explanation for these findings, which demonstrate that common genetic variants have a marked effect on the expression of an ostensibly monogenic mtDNA disorder.  相似文献   

20.
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号