首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purification of xenobiotic/medium-chain fatty acid:CoA ligases (XM-ligases) from human liver mitochondria resulted in the isolation of two chromatographically separable forms (HXM-A and HXM-B). These two forms were purified to near homogeneity, cleaved with cyanogen bromide, the resulting peptides separated, and the N-terminus of two of the peptides partially sequenced. Identical sequences were obtained for HXM-A and HXM-B for the two peptides. These sequences were used to design probes for screening a human liver cDNA library. This resulted in the isolation of two overlapping cDNAs. Using these sequences we were able to design PCR primers that resulted in the isolation of a full-length cDNA from a human cDNA library. The cDNA contained 1731 bp of open reading frame and coded for a 64230-Da protein. This protein bears 56.2% amino acid homology to the MACS1 (medium-chain acyl-CoA synthetase) enzyme, 58.7% homology to the bovine XL-III XM-ligase, and 81.5% homology to the bovine XL-I XM-ligase. The cDNA could be expressed in COS cells, and the expressed enzyme had greater benzoate activity than phenylacetate activity, which is consistent with the known substrate specificity of HXM-A.  相似文献   

2.
Short-, medium-, and long-chain fatty acid:CoA ligases from human liver were tested for their sensitivity to inhibition by triacsin C. The short-chain fatty acid:CoA ligase was inhibited less than 10% by concentrations of triacsin C as high as 80 microM. The two mitochondrial xenobiotic/medium-chain fatty acid:CoA ligases (XM-ligases), HXM-A and HXM-B, were partially inhibited by triacsin C, and the inhibitions were characterized by low affinity for triacsin C (K(I) values > 100 microM). These inhibitions were found to be the result of triacsin C competing with medium-chain fatty acid for binding at the active site. The microsomal and mitochondrial forms of long-chain fatty acid:CoA ligase (also termed long-chain fatty acyl-CoA synthetase, or long-chain acyl-CoA synthetase LACS) were potently inhibited by triacsin C, and the inhibition had identical characteristics for both LACS forms. Dixon plots of this inhibition were biphasic. There is a high-affinity site with a K(I) of 0.1 microM that accounts for a maximum of 70% of the inhibition. There is also a low affinity site with a K(I) of 6 microM that accounts for a maximum of 30% inhibition. Kinetic analysis revealed that the high-affinity inhibition of the mitochondrial and microsomal LACS forms is the result of triacsin C binding at the palmitate substrate site.The high-affinity triacsin C inhibition of both the mitochondrial and microsomal LACS forms was found to require a high concentration of free Mg(2+), with the EC(50) for inhibition being 3 mM free Mg(2+). The low affinity triacsin C inhibition was also enhanced by Mg(2+). The data suggests that Mg(2+) promotes triacsin C inhibition of LACS by enhancing binding at the palmitate binding site. In contrast, the partial inhibition of the XM-ligases by triacsin C, which showed only a low-affinity component, did not require Mg(2+).  相似文献   

3.
The effect of monovalent cation on the activity of the XL-I and XL-III forms of xenobiotic/medium-chain fatty acid:CoA ligase (XM-ligase) was investigated using a variety of different carboxylic acid substrates. With benzoate or p-hydroxybenzoate as substrate, the XL-I ligase was essentially inactive in the absence of monovalent cation. However, with phenylacetic acid and medium-chain fatty acids as substrate, the enzyme retained 3 to 10% activity upon removal of monovalent cation. Further, while Na+ was ineffective with benzoate and p-hydroxybenzoate as substrates, it was effective with other substrates, although still less effective than K+. For XL-III, activity toward benzoate, hydroxybenzoate, and salicylate was insignificant in the absence of monovalent cation, but this rate was 10% of the K(+)-supported rate for hexanoate and 20% for decanoate. Also, with decanoate as substrate, XL-III was activated more by Na+ than by K+. Thus, the nature of the dependence on monovalent cation for activity is substrate-selective. Kinetic analysis of the effect of K+ on the activity of XL-I and XL-III revealed that activation by K+ was not the result of alteration of the affinity of the enzymes for either ATP or the carboxylic acid. For both forms of XM-ligase, K+ was found to enhance the affinity of the enzyme for CoA, regardless of the substrate, although the extent of the enhancement was substrate-specific. In almost all cases there was further activation, even at saturating concentrations of CoA, which indicates an additional effect of monovalent cation on the catalytic rate constant for the reaction. The exception was activation of XL-III activity toward decanoate, which was solely the result of enhanced binding affinity for CoA.  相似文献   

4.
A mitochondrial freeze/thaw lysate was fractionated on a DEAE-cellulose column into four distinct acyl-CoA ligase fractions. First to elute was a 50 kDa short-chain ligase that activated only short-chain fatty acids. Next to elute were three ligases that had activity toward both medium-chain fatty acids and xenobiotic carboxylic acids; these were termed xenobiotic/medium-chain ligases (X-ligases) and labeled XL-I, XL-II, and XL-III, respectively, based on order of elution. The molecular weight of X-ligases I, II, and III were ca. 55,000, 55,500 and 53,000, respectively. Form XL-III showed no pH optimum; the rate increased steadily with pH beginning from pH 7.0. XL-I and XL-II showed the same behavior with benzoate as substrate, but with medium-chain fatty acids, both forms had a pH optimum at 8.8. The three X-ligases differed in substrate specificity. XL-I was the predominant nicotinic acid activating form and had the lowest Km for benzoate. Form XL-II was the only form with measurable salicylate activity, although it was extremely low. XL-III was the only 2,4,6,8-decatetraenoic acid activating form and also was the predominant medium-chain fatty acid-activating form. By comparison of substrate specificities, it was concluded that the two previously reported ligase preparations were mixtures of the three forms. When the ligase rates were compared to previously determined N-acyltransferase rates toward benzoyl-CoA and phenylacetyl-CoA, the data showed that ligase activities are 100-fold lower, and thus the ligase is rate limiting for the conjugation of both of these xenobiotics. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Neither salicylate nor ibuprofen was a substrate or inhibitor of the long-chain fatty acid: CoA ligase. In contrast, all three xenobiotic-metabolizing medium-chain fatty acid:CoA ligases (XL-I, XL-II, and XL-III) had activity toward salicylate. The Km value for salicylate was similar for all three forms (2 to 3 μM), but XL-II and XL-III had higher activity at Vmax. For ibuprofen, only XL-III catalyzed its activation, and it had a Km for ibuprofen of 36 μM. Studies of salicylate inhibition of XL-I, XL-II, and XL-III revealed that it inhibited the benzoate activity of all three forms with K1 values of ca. 2 μM, which is in agreement with the Km values obtained with salicylate as substrate. Kinetic analysis revealed that salicylate conjugation by all three forms is characterized by substrate inhibition when salicylate exceeds ca. 20 μM. Substrate inhibition was more extensive with XL-I and XL-III. Previous work on the ligases employed assay concentrations of salicylate in the range of 0.1 to 1.0 mM, which are clearly inhibitory, particularly toward XL-I and XL-III. Thus, activity was not properly measured in previous studies, which accounts for the fact that salicylate conjugation was only found with one form, which is most likely XL-II since it has the highest Vmax activity and shows the least amount of substrate inhibition. Studies with ibuprofen indicated that it inhibited XL-I, XL-II, and XL-III, with K1 values being in the range of 75–125 μM. The short-chain ligase was inhibited by both salicylate and ibuprofen with K1 values of 93 and 84 μM, respectively. It was concluded that pharmacological doses of salicylate, but not ibuprofen, will affect the metabolism of medium-chain fatty acids and carboxylic acid xenobiotics and that the previously described mitochondrial ibuprofen:CoA ligase activity is attributable to XL-III. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
LL-37 is the single cathelicidin host defense peptide in humans with direct antimicrobial and immunomodulatory activities. Specific regulation of LL-37 synthesis has emerged as a novel non-antibiotic approach to disease control and prevention. Short-chain fatty acids, and butyrate in particular, were found recently to be strong inducers of LL-37 gene expression without causing inflammation. Here, we further evaluated the LL-37-inducing efficiency of a broad range of saturated free fatty acids and their derivatives in human HT-29 colonic epithelial cells and U-937 monocytic cells by real-time RT-PCR. Surprisingly, we revealed that valerate, hexanoate, and heptanoate with 5–7 carbons are more potent than 4-carbon butyrate in promoting LL-37 gene expression in both cell types. Free fatty acids with longer than 7 or shorter than 4 carbons showed only a marginal effect on LL-37 expression. Studies with a series of fatty acid derivatives with modifications in the aliphatic chain or carboxylic acid group yielded several analogs such as benzyl butyrate, trans-cinnamyl butyrate, glyceryl tributyrate, and phenethyl butyrate with a comparable LL-37-inducing activity to sodium butyrate. On the other hand, although reactive, the anhydride derivatives of short- and medium-chain fatty acids are as potent as their corresponding free acid forms in LL-37 induction. Thus, these newly identified free fatty acids and their analogs with a strong capacity to augment LL-37 synthesis may hold promise as immune boosting dietary supplements for antimicrobial therapy.  相似文献   

7.
1. The total capacities of homogenates of bovine liver and rumen epithelium to activate acetate, propionate and butyrate were determined. 2. Activating capacities were assayed by measuring the rate of formation of the corresponding CoA esters. The methods used for determining the concentrations of the CoA esters allowed the CoA esters of acetate, propionate and butyrate to be distinguished. It was thus possible to investigate the effect of the presence of a second volatile fatty acid on the rate at which a given volatile fatty acid was activated. 3. The propionate-activating capacity in rumen epithelium was decreased by about 87% in the presence of butyrate, the acetate-activating capacity in liver was decreased by about 55% in the presence of either propionate or butyrate, and the butyrate-activating capacity in liver was decreased by about 40-50% in the presence of propionate. 4. All three activating capacities in liver appeared to be located in the mitochondrial matrix and membrane. The three activating capacities had similar locations to each other in rumen epithelium as well, although in this case activity was more evenly divided between the mitochondria and the cytoplasm. 5. The relative activating capacities towards the volatile fatty acids in the two tissues, together with the ability of one volatile fatty acid to inhibit the activation of another volatile fatty acid, appear to ensure that butyrate is mainly metabolized in the rumen epithelium and that propionate is metabolized in the liver.  相似文献   

8.
Coenzyme A (CoA) transferase from Clostridium acetobutylicum ATCC 824 was purified 81-fold to homogeneity. This enzyme was stable in the presence of 0.5 M ammonium sulfate and 20% (vol/vol) glycerol, whereas activity was rapidly lost in the absence of these stabilizers. The kinetic binding mechanism was Ping Pong Bi Bi, and the Km values at pH 7.5 and 30 degrees C for acetate, propionate, and butyrate were, respectively, 1,200, 1,000, and 660 mM, while the Km value for acetoacetyl-CoA ranged from about 7 to 56 microM, depending on the acid substrate. The Km values for butyrate and acetate were high relative to the intracellular concentrations of these species; consequently, in vivo enzyme activity is expected to be sensitive to changes in those concentrations. In addition to the carboxylic acids listed above, this CoA transferase was able to convert valerate, isobutyrate, and crotonate; however, the conversion of formate, n-caproate, and isovalerate was not detected. The acetate and butyrate conversion reactions in vitro were inhibited by physiological levels of acetone and butanol, and this may be another factor in the in vivo regulation of enzyme activity. The optimum pH of acetate conversion was broad, with at least 80% of maximal activity from pH 5.9 to greater than 7.8. The purified enzyme was a heterotetramer with subunit molecular weights of about 23,000 and 25,000.  相似文献   

9.
1. A technique is described for the rapid separation of intestinal epithelial cells from the incubation medium by passage through a silicon-oil layer and collection in acid, in which their soluble constituents are released. 2. The inhibition by fatty acids of pyruvate oxidation is further studied. Measurement of pyruvate transport in epithelial cells at 0 degree C showed that short- and medium-chain fatty acids as well as ricinoleate inhibit this transport. Propionate inhibits pyruvate transport by another mechanism than octanoate. 3. Differences between pyruvate propionate and octanoate transport across the epithelial cell membrane were obtained in efflux studies. These studies revealed that acetate, propionate, butyrate and high concentrations of bicarbonate readily stimulate the efflux of pyruvate, probably by anionic counter-transport. No effects were seen with octanoate and hexanoate. The data obtained in these efflux studies suggest that lipophilicity and the pKa values of the monocarboxylic acids determine the contribution of non-ionic diffusion to overall transport. 4. Saturation kinetics, competitive inhibition by short-chain fatty acids and counter-transport suggest a carrier-mediated transport of pyruvate.  相似文献   

10.
The activation of 4-bromocrotonic acid, 4-bromo-2-octenoic acid, valproic acid, and 3-methylglycidic acid by conversion to their CoA thioesters and the effects of these carboxylic acids on palmitoylcarnitine-supported respiration were studied with rat liver and rat heart mitochondria. 4-Bromocrotonic acid was activated by both liver and heart mitochondria, whereas 4-bromo-2-octenoic acid and valproic acid were only activated by liver mitochondria. 3-Methylglycidic acid was not a substrate of mitochondrial activation. All of the carboxylic acids that were activated also inhibited palmitoylcarnitine-supported respiration. 3-Methylglycidoyl-CoA was found to irreversibly inhibit 3-ketoacyl-CoA thiolase in a concentration-dependent and time-dependent manner. Together, these results lead to the conclusion that substituted medium-chain carboxylic acids, which enter mitochondria directly, may inhibit β-oxidation as long as they are activated and perhaps further metabolized in the mitochondrial matrix to compounds that sequester CoA and/or inhibit β-oxidation enzymes. Liver is more susceptible to inhibition by such xenobiotic carboxylic acids due to the broader substrate specificity of its mitochondrial medium-chain acyl-CoA synthetase (EC 6.2.1.2).  相似文献   

11.
Coenzyme A (CoA) transferase from Clostridium acetobutylicum ATCC 824 was purified 81-fold to homogeneity. This enzyme was stable in the presence of 0.5 M ammonium sulfate and 20% (vol/vol) glycerol, whereas activity was rapidly lost in the absence of these stabilizers. The kinetic binding mechanism was Ping Pong Bi Bi, and the Km values at pH 7.5 and 30 degrees C for acetate, propionate, and butyrate were, respectively, 1,200, 1,000, and 660 mM, while the Km value for acetoacetyl-CoA ranged from about 7 to 56 microM, depending on the acid substrate. The Km values for butyrate and acetate were high relative to the intracellular concentrations of these species; consequently, in vivo enzyme activity is expected to be sensitive to changes in those concentrations. In addition to the carboxylic acids listed above, this CoA transferase was able to convert valerate, isobutyrate, and crotonate; however, the conversion of formate, n-caproate, and isovalerate was not detected. The acetate and butyrate conversion reactions in vitro were inhibited by physiological levels of acetone and butanol, and this may be another factor in the in vivo regulation of enzyme activity. The optimum pH of acetate conversion was broad, with at least 80% of maximal activity from pH 5.9 to greater than 7.8. The purified enzyme was a heterotetramer with subunit molecular weights of about 23,000 and 25,000.  相似文献   

12.
1. Propionate and other unbranched short-chain fatty acids, butyrate, pentanoate, hexanoate and octanoate were found to both stimulate and inhibit active sodium transport by the toad bladder, as measured by the short-circuit current (s.c.c.). 2. Stimulation alone followed addition of low concentrations of fatty acids (0.1-1.0 mM) to either the serosal or mucosal bathing medium; stimulation was also seen after an initial period of inhibition in response to higher concentrations (approx. 5 mM) of some compounds. 3. Inhibition alone followed addition of high concentrations (5-20 mM) of these compounds. The duration and magnitude of the inhibition varied with increasing concentration and chain length of the fatty acid, and was greater following mucosal addition than serosal addition. 4. The inhibitory effect of mucosal propionate increased with decreasing pH of the mucosal bathing medium. 5. Inhibition by the fatty acids was completely reversed upon removing the compound from the bathing medium, and stimulation characteristically followed. 6. In studies designed to evaluate the role of metabolism of the fatty acids in their mucosal inhibitory effects it was found that 14-c-labelled propionate, when added to the mucosal surface of the bladder, was converted to 14-CO2, and mucosal succinate and alpha-oxoglutaric acid at 20 mM inhibited the s.c.c. slightly. However, malonate did not interfere with inhibition by mucosal propionate and two non-metabolizable acids, dimethylpropionate and benzoate, induced inhibition (and no stimulation) of the s.c.c. 7. In the presence of an inhibitory concentration of fatty acid, the ability of the bladder to respond to added pyruvate was reduced in proportion to the reduction in the level of the s.c.c., whereas the natriferic response to vasopressin was largely intact. 8. We conclude that stimulation of sodium transport by propionate and other short-chain fatty acids is due to metabolism of the compounds and provision of energy to the sodium transport mechanism. The basis of the inhibition appears complex. It may in part depend on metabolism of the fatty acids and/or uncoupling of oxidative phosphorylation, with resultant reduction in net ATP production for the sodium transport mechanism. However, the inhibition may also be caused in part by a direct effect on the mucosal entry of sodium into the transporting epithelial cells.  相似文献   

13.
Listeria monocytogenes, the causative agent of listeriosis, can build up to dangerous levels in refrigerated foods potentially leading to expensive product recalls. An important aspect of the bacterium's growth at low temperatures is its ability to increase the branched-chain fatty acid anteiso C15:0 content of its membrane at lower growth temperatures, which imparts greater membrane fluidity. Mutants in the branched-chain α-keto dehydrogenase (bkd) complex are deficient in branched-chain fatty acids (BCFAs,) but these can be restored by feeding C4 and C5 branched-chain carboxylic acids (BCCAs). This suggests the presence of an alternate pathway for production of acyl CoA precursors for fatty acid biosynthesis. We hypothesize that the alternate pathway is composed of butyrate kinase (buk) and phosphotransbutyrylase (ptb) encoded in the bkd complex which produce acyl CoA products by their sequential action through the metabolism of carboxylic acids. We determined the steady state kinetics of recombinant His-tagged Buk using 11 different straight-chain and BCCA substrates in the acyl phosphate forming direction. Buk demonstrated highest catalytic efficiency with pentanoate as the substrate. Low product formation observed with acetate (C2) and hexanoate (C6) as the substrates indicates that Buk is not involved in either acetate metabolism or long chain carboxylic acid activation. We were also able to show that Buk catalysis occurs through a ternary complex intermediate. Additionally, Buk demonstrates a strong preference for BCCAs at low temperatures. These results indicate that Buk may be involved in the activation and assimilation of exogenous carboxylic acids for membrane fatty acid biosynthesis.  相似文献   

14.
1. Crude extracts of seeds of Pinus radiata catalysed acetate-, propionate-, n-butyrate- and n-valerate-dependent PP(i)-ATP exchange in the presence of MgCl(2), which was apparently due to a single enzyme. Propionate was the preferred substrate. Crude extracts did not catalyse medium-chain or long-chain fatty acid-dependent exchange. 2. Ungerminated dry seeds contained short-chain fatty acyl-CoA synthetase activity. The activity per seed was approximately constant for 11 days after imbibition and then declined. The enzyme was located only in the female gametophyte tissue. 3. The synthetase was purified 70-fold. 4. Some properties of the enzyme were studied by [(32)P]PP(i)-ATP exchange. K(m) values for acetate, propionate, n-butyrate and n-valerate were 4.7, 0.21, 0.33 and 2.1mm respectively. Competition experiments between acetate and propionate demonstrated that only one enzyme was involved and confirmed that the affinity of the enzyme for propionate was greater than that for acetate. CoA inhibited fatty acid-dependent PP(i)-ATP exchange. The enzyme catalysed fatty acid-dependent [(32)P]PP(i)-dATP exchange. 5. The enzyme also catalysed the fatty acyl-AMP-dependent synthesis of [(32)P]ATP from [(32)P]PP(i). Apparent K(m) (acetyl-AMP) and apparent K(m) (propionyl-AMP) were 57mum and 7.5mum respectively. The reaction was inhibited by AMP and CoA. 6. Purified enzyme catalysed the synthesis of acetyl-CoA and propionyl-CoA. Apparent K(m) (acetate) and apparent K(m) (propionate) were 16mm and 7.5mm respectively. The rate of formation of acetyl-CoA was enhanced by pyrophosphatase. 7. It was concluded that fatty acyl adenylates are intermediates in the formation of the corresponding fatty acyl-CoA.  相似文献   

15.
Investigations on the cholic acid CoA ligase activity of rat liver microsomes were made possible by the development of a rapid, sensitive radiochemical assay based on the conversion of [3H]choloyl-CoA. More than 70% of the rat liver cholic acid CoA ligase activity was associated with the microsomal subcellular fraction. The dependencies of cholic acid CoA ligase activity on pH, ATP, CoA, Triton WR-1339, acetone, ethanol, magnesium, and salts were investigated. The hypothesis that the long chain fatty acid CoA ligase activity and the cholic acid CoA ligase activity are catalyzed by a single microsomal enzyme was investigated. The ATP, CoA, and cholic (palmitic) acid kinetics neither supported nor negated the hypothesis. Cholic acid was not an inhibitor of the fatty acid CoA ligase and palmitic acid was not a competitive inhibitor of the cholic acid CoA ligase. The cholic acid CoA ligase activity utilized dATP as a substrate more effectively than did the fatty acid CoA ligase activity. The cholic acid and fatty acid CoA ligase activities appeared to have different pH dependencies, differed in thermolability at 41 degrees, and were differentially inactivated by phospholipase C. Moreover, fatty acid CoA ligase activity was present in microsomal fractions from all rat organs tested while cholic acid CoA ligase activity was detected only in liver microsomes. The data suggest that separate microsomal enzymes are responsible for the cholic acid and the fatty acid CoA ligase activities in liver.  相似文献   

16.
Arabidopsis thaliana contains a large number of genes that encode carboxylic acid-activating enzymes, including nine long-chain fatty acyl-CoA synthetases, four 4-coumarate:CoA ligases (4CL), and 25 4CL-like proteins of unknown biochemical function. Because of their high structural and sequence similarity with bona fide 4CLs and their highly hydrophobic putative substrate-binding pockets, the 4CL-like proteins At4g05160 and At5g63380 were selected for detailed analysis. Following heterologous expression, the purified proteins were subjected to a large scale screen to identify their preferred in vitro substrates. This study uncovered a significant activity of At4g05160 with medium-chain fatty acids, medium-chain fatty acids carrying a phenyl substitution, long-chain fatty acids, as well as the jasmonic acid precursors 12-oxo-phytodienoic acid and 3-oxo-2-(2'-pentenyl)-cyclopentane-1-hexanoic acid. The closest homolog of At4g05160, namely At5g63380, showed high activity with long-chain fatty acids and 12-oxo-phytodienoic acid, the latter representing the most efficiently converted substrate. By using fluorescent-tagged variants, we demonstrated that both 4CL-like proteins are targeted to leaf peroxisomes. Collectively, these data demonstrate that At4g05160 and At5g63380 have the capacity to contribute to jasmonic acid biosynthesis by initiating the beta-oxidative chain shortening of its precursors.  相似文献   

17.
N Noy  D Zakim 《Biochemistry》1985,24(14):3521-3525
Palmitate incorporated into single-layered vesicles of phosphatidylcholine was used as a substrate for palmitoyl coenzyme A ligase (palmitoyl-CoA ligase) in microsomes from rat liver. This was done in order to avoid the use of detergents for dispersal of the water-insoluble palmitate and the possibility of precipitating palmitate added to the aqueous assay as a salt suspension. The activity of the ligase measured when palmitate was added to assays as a component of phospholipid vesicles was 10-40-fold greater vs. activities reported in the literature using other methods for adding fatty acids to the assay system. Phospholipids, however, had no direct effect on the activity of palmitoyl-CoA ligase. The data indicate, therefore, that the activity of this enzyme has been underestimated because of the manner in which fatty acid was added to the assay, which has a significant effect on the activity of the ligase. It is shown too that the rate of spontaneous transfer of palmitate from unilamellar vesicles of phosphatidylcholine to microsomes via a hydrated intermediate is far more rapid than the inherent catalytic activity of the fatty acyl-CoA ligase. The data also suggest that the membrane-associated pool of fatty acid and not fatty acid in the aqueous phase of the assay is the pool of substrate interacting with the ligase.  相似文献   

18.
Rat liver peroxisomes oxidized palmitate in the presence of ATP, CoA and NAD+, and the rate of palmitate oxidation exceeded that of palmitoyl-CoA oxidation. Acyl-CoA synthetase [acid: CoA ligase (AMP-forming); EC 6.2.1.3] was found in peroxisomes. The substrate specificity of the peroxisomal synthetase towards fatty acids with various carbon chain lengths was similar to that of the microsomal enzyme. The peroxisomal synthetase activity toward palmitate (40--100 nmol/min per mg protein) was higher than the rate of palmitate oxidation by the peroxisomal system (0.7--1.7 nmol/min per mg protein). The data show that peroxisomes activate long chain fatty acids and oxidize their acyl-CoA derivatives.  相似文献   

19.
The enzymes catalyzing the formation of coenzyme A (CoA) thioesters of benzoate and 2-aminobenzoate were studied in a denitrifying Pseudomonas sp. anaerobically grown with these aromatic acids and nitrate as sole carbon and energy sources. Three different rather specific aromatic acyl-CoA ligases, E1, E2, and E3, were found which catalyze the formation of CoA thioesters of benzoate, fluorobenzoates, and 2-aminobenzoate. ATP is cleaved into AMP and pyrophosphate. The enzymes were purified, their N-terminal amino acid sequences were determined, and their catalytic and molecular properties were studied. Cells anaerobically grown on benzoate and nitrate contain one CoA ligase (AMP forming) for benzoic acid (E1). It is a homodimer of Mr 120,000 which prefers benzoate as a substrate but shows some activity also with 2-aminobenzoate and fluorobenzoates, although with lower Km. Cells anaerobically grown on 2-aminobenzoate and nitrate contain three different CoA ligases for aromatic acids. The first one is identical with benzoate-CoA ligase (E1). The second enzyme is a 2-aminobenzoate-CoA ligase (E2). It is a monomer of Mr 60,000 which prefers 2-aminobenzoate but also activates benzoate, fluorobenzoates and, less effectively, 2-methylbenzoate, with lower affinities to the latter substrates. The enzymes E1 and E2 have similar activity levels; a third minor CoA ligase activity is due to a different 2-aminobenzoate-CoA ligase. The enzyme (E3) is a monomer of Mr, 65,000 which 2-aminobenzoate pathway (U. Altenschmidt, C. Eckerskorn, and G. Fuchs, Eur. J. Biochem. 194:647-653, 1990); apparently, it is not completely repressed under anaerobic conditions and therefore also is induced to a small extent by 2-aminobenzoate under anaerobic growth conditions.  相似文献   

20.
Fatty acid CoA ligase (AMP) (EC 6.2.1.3) specific activity was increased approximately 2-fold in microsomes prepared from isolated rat fat cells incubated with 400 microunits of insulin/ml (2.9 nM) for 45 to 60 min compared to paired controls using an assay based on the conversion of [3H]oleic acid to [3H]oleoyl-CoA. Similar insulin-dependent increases in microsomal fatty acid CoA ligase specific activities were observed using an assay based on the conversion of [3H]CoA to fatty acyl-[3H]CoA. Fatty acid CoA ligase activity was predominately (about 80%) associated with the microsomal fraction. The insulin-dependent increase in microsomal fatty acid CoA ligase specific activity was maximal in 2 to 5 min at 400 microunits/ml. At 10 min, 80 to 100 microunits of insulin/ml caused a maximal increase in fatty acid CoA ligase specific activity. Similar apparent Km values for ATP, CoA, and fatty acid were observed for fatty acid CoA ligase activity in microsomal preparations from control and insulin-exposed cells. These data suggest that fatty acid CoA ligase activity is regulated in adipose tissue by insulin. Such regulation may serve to promote the capture of fatty acid and thereby, triacylglycerol synthesis in adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号