共查询到20条相似文献,搜索用时 15 毫秒
1.
Vessey DA Kelley M Lau E Zhang SZ 《Journal of biochemical and molecular toxicology》2000,14(3):162-168
The effect of monovalent cation on the activity of the XL-I and XL-III forms of xenobiotic/medium-chain fatty acid:CoA ligase (XM-ligase) was investigated using a variety of different carboxylic acid substrates. With benzoate or p-hydroxybenzoate as substrate, the XL-I ligase was essentially inactive in the absence of monovalent cation. However, with phenylacetic acid and medium-chain fatty acids as substrate, the enzyme retained 3 to 10% activity upon removal of monovalent cation. Further, while Na+ was ineffective with benzoate and p-hydroxybenzoate as substrates, it was effective with other substrates, although still less effective than K+. For XL-III, activity toward benzoate, hydroxybenzoate, and salicylate was insignificant in the absence of monovalent cation, but this rate was 10% of the K(+)-supported rate for hexanoate and 20% for decanoate. Also, with decanoate as substrate, XL-III was activated more by Na+ than by K+. Thus, the nature of the dependence on monovalent cation for activity is substrate-selective. Kinetic analysis of the effect of K+ on the activity of XL-I and XL-III revealed that activation by K+ was not the result of alteration of the affinity of the enzymes for either ATP or the carboxylic acid. For both forms of XM-ligase, K+ was found to enhance the affinity of the enzyme for CoA, regardless of the substrate, although the extent of the enhancement was substrate-specific. In almost all cases there was further activation, even at saturating concentrations of CoA, which indicates an additional effect of monovalent cation on the catalytic rate constant for the reaction. The exception was activation of XL-III activity toward decanoate, which was solely the result of enhanced binding affinity for CoA. 相似文献
2.
Donald A. Vessey Jie Hu Michael Kelley 《Journal of biochemical and molecular toxicology》1996,11(2):73-78
Neither salicylate nor ibuprofen was a substrate or inhibitor of the long-chain fatty acid: CoA ligase. In contrast, all three xenobiotic-metabolizing medium-chain fatty acid:CoA ligases (XL-I, XL-II, and XL-III) had activity toward salicylate. The Km value for salicylate was similar for all three forms (2 to 3 μM), but XL-II and XL-III had higher activity at Vmax. For ibuprofen, only XL-III catalyzed its activation, and it had a Km for ibuprofen of 36 μM. Studies of salicylate inhibition of XL-I, XL-II, and XL-III revealed that it inhibited the benzoate activity of all three forms with K1 values of ca. 2 μM, which is in agreement with the Km values obtained with salicylate as substrate. Kinetic analysis revealed that salicylate conjugation by all three forms is characterized by substrate inhibition when salicylate exceeds ca. 20 μM. Substrate inhibition was more extensive with XL-I and XL-III. Previous work on the ligases employed assay concentrations of salicylate in the range of 0.1 to 1.0 mM, which are clearly inhibitory, particularly toward XL-I and XL-III. Thus, activity was not properly measured in previous studies, which accounts for the fact that salicylate conjugation was only found with one form, which is most likely XL-II since it has the highest Vmax activity and shows the least amount of substrate inhibition. Studies with ibuprofen indicated that it inhibited XL-I, XL-II, and XL-III, with K1 values being in the range of 75–125 μM. The short-chain ligase was inhibited by both salicylate and ibuprofen with K1 values of 93 and 84 μM, respectively. It was concluded that pharmacological doses of salicylate, but not ibuprofen, will affect the metabolism of medium-chain fatty acids and carboxylic acid xenobiotics and that the previously described mitochondrial ibuprofen:CoA ligase activity is attributable to XL-III. © 1996 John Wiley & Sons, Inc. 相似文献
3.
A mitochondrial freeze/thaw lysate was fractionated on a DEAE-cellulose column into four distinct acyl-CoA ligase fractions. First to elute was a 50 kDa short-chain ligase that activated only short-chain fatty acids. Next to elute were three ligases that had activity toward both medium-chain fatty acids and xenobiotic carboxylic acids; these were termed xenobiotic/medium-chain ligases (X-ligases) and labeled XL-I, XL-II, and XL-III, respectively, based on order of elution. The molecular weight of X-ligases I, II, and III were ca. 55,000, 55,500 and 53,000, respectively. Form XL-III showed no pH optimum; the rate increased steadily with pH beginning from pH 7.0. XL-I and XL-II showed the same behavior with benzoate as substrate, but with medium-chain fatty acids, both forms had a pH optimum at 8.8. The three X-ligases differed in substrate specificity. XL-I was the predominant nicotinic acid activating form and had the lowest Km for benzoate. Form XL-II was the only form with measurable salicylate activity, although it was extremely low. XL-III was the only 2,4,6,8-decatetraenoic acid activating form and also was the predominant medium-chain fatty acid-activating form. By comparison of substrate specificities, it was concluded that the two previously reported ligase preparations were mixtures of the three forms. When the ligase rates were compared to previously determined N-acyltransferase rates toward benzoyl-CoA and phenylacetyl-CoA, the data showed that ligase activities are 100-fold lower, and thus the ligase is rate limiting for the conjugation of both of these xenobiotics. © 1996 John Wiley & Sons, Inc. 相似文献
4.
M Hardy R Salvayre A Maret L Douste-Blazy 《The International journal of biochemistry》1988,20(5):533-538
Short- and medium-chain monocarboxylic acids showed an inhibitory effect on enzymatic activity of beta-hexosaminidase B (Hex B) when 4-methylumbelliferyl-2-acetamido-2-deoxyglucopyranoside (MU-GlcNAc) was used as substrate: 1. Two groups were distinguished according to the chain length of the monocarboxylic acids: the first was only constituted by acetic acid (C2) whereas the second group exhibited a broader chain length specificity for medium-chain monocarboxylic acids (between C6 and C9). 2. Both groups were reversible competitive inhibitors (Km = 0.52 +/- 0.15 mM; KiC2 = 21.4 +/- 3.0 mM; KiC7 = 3.4 +/- 0.5 mM). Competition experiments between C2 and C7 (as representent of medium-chain monocarboxylic acids group) demonstrated that these inhibitors were bound to different subsites. 3. Competition experiments between C2 and 2-acetamido-2-deoxy-D-galactonolactone (GalNAcLone) (a competitive inhibitor of lysosomal hexosaminidases) demonstrated that these two inhibitors were mutually exclusive, i.e. they were probably bound at the same subsite. This feature and the structural analogy of C2 with the acetyl residue of GalNAcLone (and of the saccharidic part of the substrate) suggested that C2 bound to the substrate site where the N-acetyl residue of the beta-N-acetyl hexosaminide was positioned. 4. The inhibitory effect of medium-chain monocarboxylic acids (C6 and C9) was dependent on their physical state. Below the critical micellar concentration (CMC), detected by a dye spectral shift method, no significant inhibition was detected, but as extensively reported using C7, an obvious inhibitory effect occurred at concentrations higher than CMC.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols 总被引:9,自引:0,他引:9
Uptake rates across the jejunal brush border have been measured for water-soluble fatty acids and alcohols and analyzed to determine the relative roles of the unstirred water layer and the lipid cell membrane as determinants of the intestinal absorptive process. Initial studies involving measurement of time courses of electrical transients developed across the intestine exposed to poorly permeant solute molecules showed no anomalous discrimination of probe molecules of different size or charge. This finding suggests that the diffusion barrier in the intestine can be considered as an unstirred water layer. Next, uptake rates of fatty acid were found to be linear with respect to concentration of the test solute, demonstrated no competitive inhibition or contralateral stimulation, had low temperature dependency, and were insensitive to metabolic inhibition, indicating that uptake proceeds by passive diffusion. Passive permeability coefficients, *P, varied from 22 +/- 1.4 to 395 +/- 9.2 nmoles.min(-1).100 mg(-1).mm(-1) for the saturated fatty acids 2:0 through 12:0 and from 119 +/- 3.3 to 581 +/- 45.2 for the saturated alcohols 6:0 through 10:0. Vigorous stirring of the bulk buffer solution enhanced *P values in direct proportion to chain length while the presence of bile acid micelles depressed apparent permeability coefficients in proportion to fatty acid chain length. These results demonstrate that uptake of short-chain fatty acid monomers is rate limited by the lipid cell membrane but diffusion through the unstirred water layer becomes increasingly rate limiting as the chain length increases. It is also possible to conclude from these data that diffusion through the unstirred water layer becomes totally rate limiting for uptake of long-chain fatty acid monomers of physiological importance. 相似文献
6.
Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short- and medium-chain fatty acids. 总被引:4,自引:1,他引:4
下载免费PDF全文

The addition of saturated C6, C8, C10, and C12 fatty acids appeared to lyse actively growing cells of Bacillus subtilis 168, as judged by a decrease in the optical density of the culture. Of these fatty acids, dodecanoic acid was the most effective, with 50% lysis occurring in about 30 min at a concentration of 0.5 mM. These conditions also decreased the amount of peptidoglycan estimated by the incorporated radioactivity of N-acetyl-D-[1-14C]glucosamine. At concentrations above 1 mM, however, bacterial lysis was not extensive. Dodecanoic acid did not affect autolysis of the cell wall. The lytic action of dodecanoic acid was greatly diminished in cells in which protein synthesis was inhibited and in an autolytic enzyme-deficient mutant. The results suggest that fatty acid-induced lysis of B. subtilis 168 is due to the induction of autolysis by an autolytic enzyme rather than massive solubilization of the cell membrane by the detergent-like action of the fatty acids. 相似文献
7.
8.
9.
10.
11.
12.
13.
Nicole Lindenkamp Marc Schürmann Alexander Steinbüchel 《Applied microbiology and biotechnology》2013,97(17):7699-7709
In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA–C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising — amongst others — the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16?pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3′-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating other CoA-transferase(s) or CoA-synthetase(s), thereby compensating for the lacking Pct. The ability of R. eutropha H16 to substitute absent enzymes by isoenzymes has been already shown in different other studies in the past. 相似文献
14.
The functions of two long-chain fatty acid CoA ligase genes (facl) in crude oil-degrading Geobacillus thermodenitrificans NG80-2 were characterized. Facl1 and Facl2 encoded by GTNG_0892 and GTNG_1447 were expressed in Escherichia coli and purified as His-tagged fusion proteins. Both enzymes utilized a broad range of fatty acids ranging from acetic acid (C2) to melissic acid (C30). The most preferred substrates were capric acid (C10) for Facl1 and palmitic acid (C16) for Facl2, respectively. Both enzymes had an optimal temperature of 60 °C, an optimal pH of 7.5, and required ATP as a cofactor. Thermostability of the enzymes and effects of metal ions, EDTA, SDS and Triton X-100 on the enzyme activity were also investigated. When NG80-2 was cultured with crude oil rather than sucrose as the sole carbon source, upregulation of facl1 and facl2 mRNA was observed by real time RT-PCR. This is the first time that the activity of fatty acid CoA ligases toward long-chain fatty acids up to at least C30 has been demonstrated in bacteria. 相似文献
15.
Novak EM Innis SM 《American journal of physiology. Endocrinology and metabolism》2011,301(5):E807-E817
Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate. 相似文献
16.
The XL-I form of xenobiotic-metabolizing medium-chain fatty acid:CoA ligase was previously purified to apparent homogeneity from bovine liver mitochondria, and the amino acid sequence of a short segment of the enzyme was determined. This sequence was used to develop a probe for screening a bovine cDNA library from which a 1.6 kb cDNA was isolated. This cDNA was sequenced and found to contain the code for the known amino acid sequence. The complete open reading frame was not present in this cDNA, but it was estimated to code for approximately 75% of the XL-I sequence. The XL-III ligase was purified to apparent homogeneity from bovine liver mitochondria. The enzyme eluted from a gel filtration column as a single peak with an apparent molecular weight of ca. 55,000. It ran as a single band on SDS-polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular weight of 62 kDa. N-Terminal sequence analysis of the enzyme gave no sequence, which indicates a blocked N-terminus. The enzyme was chemically cleaved using CNBr. The resulting peptides were separated by SDS-PAGE. The cleavage pattern revealed two large peptides of ca. 21 and 25 kDa, plus several smaller peptides including a prominent 6 kDa peptide. The N-terminus of the 6, 21, and 25 kDa peptides was sequenced and the 21 and 25 kDa sequences were identical indicating incomplete cleavage. The sequences were used to design probes for screening a bovine liver cDNA library. This resulted in the isolation of a 2,065 bp cDNA. This cDNA was sequenced and found to contain the initiation and termination codons, as well as the requisite amino acid sequences. The open reading frame coded for a 64,922 Da protein. The sequence of XL-III cDNA was markedly different from that of XL-I, indicating the genetic uniqueness of the two ligases. They are, however, 64% homologous, which suggests a common evolutionary origin. 相似文献
17.
Absorption of medium-chain fatty acids by the dog colon 总被引:1,自引:0,他引:1
18.
A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria 总被引:1,自引:0,他引:1
Acyl-CoA hydrolase activities were studied in brown adipose tissue from hamsters. A latent activity was observed in isolated mitochondria. Two peaks of activity were clearly visible in mitochondria, one with an optimum at propionyl-CoA ("short-chain hydrolase") and one with an optimum at nonanoyl-CoA ("medium-chain hydrolase"); there was only low activity toward palmitoyl-CoA and longer-chain acyl-CoAs. In subcellular fractionation experiments, the activity of the short-chain and the medium-chain hydrolase fully followed that of the mitochondrial matrix marker enzyme 2-oxoglutarate dehydrogenase. The specific activity of the hydrolases in the mitochondrial fraction was doubled after cold acclimation. beta-NADH inhibited the short- and medium-chain hydrolases; alpha-NADH, NADPH, and NAD+ were without effect. ADP stimulated the short- and medium-chain hydrolases; ATP and AMP were practically without effect. Evidence is presented to indicate that NADH and ADP interact on the enzyme at the same site and that ADP is essential for the maintenance of the short- and medium-chain enzyme activities. A positive effect of KCl was found on the short- and medium-chain hydrolase activities. Also, the divalent ions Ca2+ and Mg2+ were stimulatory, but only Ca2+ was able to overcome NADH inhibition, possibly due to interaction directly with NADH. It is concluded that brown adipose tissue mitochondria, besides a conventional type of acyl-CoA hydrolase, contain two species of a novel type of acyl-CoA hydrolases which are characterized by being regulated by ADP and NADH (interacting at a common site) and by having an obligatory requirement for ADP. 相似文献
19.
20.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(1):223-227
Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC50?=?78.7 and 64.7 µM) and but also for palmitic acid (IC50?=?236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC50?=?411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC50?=?57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver. 相似文献