首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine.  相似文献   

2.
The aim of the present investigation was to characterize the cytochrome P450 (CYP)-dependent metabolism of l-deprenyl by brain microsomal preparations obtained from two different animal models that have been extensively used in Parkinson's disease studies, namely monkey (Cercopithecus aethiops) and C57BL/6 mouse. In monkey brain microsomal fractions, the apparent Km values for methamphetamine formation from l-deprenyl were 67.8 +/- 1.0 and 72.0 +/- 1.6 microm, in the cortex and striatum, respectively. Similarly, for nordeprenyl formation from l-deprenyl, Km values in cortex and striatum were 21.3 +/- 3.2 and 27.3 +/- 4.0 microm, respectively. Both metabolic pathways appear to be more efficient in the cortex than in the striatum as the Vmax for microsomal preparation was lower in the striatum for the formation of both metabolites. The formation rate of l-methamphetamine was up to one order of magnitude greater than that of nordeprenyl. Inhibition analysis of both pathways in monkey brain suggested that l-methamphetamine formation is catalysed by CYP2A and CYP3A, whereas only CYP3A appears to be involved in nordeprenyl formation. With microsomal preparations from whole brain of C57BL/6 mice, the only l-deprenyl metabolite that could be detected was methamphetamine and the Km and Vmax values were similar to those determined in monkey cortex (53.6 +/- 2.9 microm and 33.9 +/- 0.4 pmol/min/mg protein, respectively). 4-Methylpyrazole selectively inhibited methamphetamine formation, suggesting the involvement of CYP2E1. In conclusion, the present study indicates that l-deprenyl is effectively metabolised by CYP-dependent oxidases in the brain, giving rise mainly to the formation of methamphetamine, which has been suggested to play a role in the pharmacological effects of the parent drug. The results also demonstrate that there are differences between species in CYP-dependent metabolism of l-deprenyl.  相似文献   

3.
4.
Immunological activation has been proposed to play a role in methamphetamine-induced dopaminergic terminal damage. In this study, we examined the roles of lipopolysaccharide, a pro-inflammatory and inflammatory factor, treatment in modulating the methamphetamine-induced nigrostriatal dopamine neurotoxicity. Lipopolysaccharide pretreatment did not affect the basal body temperature or methamphetamine-elicited hyperthermia three days later. Such systemic lipopolysaccharide treatment mitigated methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions in a dose-dependent manner. As the most potent dose (1 mg/kg) of lipopolysaccharide was administered two weeks, one day before or after the methamphetamine dosing regimen, methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions remained unaltered. Moreover, systemic lipopolysaccharide pretreatment (1 mg/kg) attenuated local methamphetamine infusion-produced dopamine and 3,4-dihydroxyphenylacetic acid depletions in the striatum, indicating that the protective effect of lipopolysaccharide is less likely due to interrupted peripheral distribution or metabolism of methamphetamine. We concluded a critical time window for systemic lipopolysaccharide pretreatment in exerting effective protection against methamphetamine-induced nigrostriatal dopamine neurotoxicity.  相似文献   

5.
The retinal arterial network structure can be altered by systemic diseases such as hypertension and diabetes. In order to compare the energy requirement for maintaining retinal blood flow and vessel wall metabolism between normal and hypertensive subjects, 3D hypothetical models of a representative retinal arterial bifurcation were constructed based on topological features derived from retinal images. Computational analysis of blood flow was performed, which accounted for the non-Newtonian rheological properties of blood and peripheral vessel resistance. The results suggested that the rate of energy required to maintain the blood flow and wall metabolism is much lower for normal subjects than for hypertensives, with the latter requiring 49.2% more energy for an entire retinal arteriolar tree. Among the several morphological factors, length-to-diameter ratio was found to have the most significant influence on the overall energy requirement.  相似文献   

6.
Some common genetic factors appear to influence risk for drug dependence across multiple drugs of abuse. In previous research, mice that were selectively bred for higher amounts of methamphetamine consumption, using a two‐bottle choice methamphetamine drinking procedure, were found to be less sensitive to the locomotor stimulant effects of morphine and of the more selective μ‐opioid receptor agonist fentanyl, compared to mice that were bred for low methamphetamine consumption. This suggested that μ‐opioid receptor‐mediated pathways may influence genetic risk for methamphetamine consumption. We hypothesized that these differences in opioid sensitivity would impact opioid intake in the methamphetamine drinking lines and that drugs with μ‐opioid receptor activity would impact methamphetamine intake. Consumption of morphine was examined in 2, two‐bottle choice studies, one that compared morphine to quinine consumption and another that used a saccharin fading procedure. Next, naltrexone (0, 0.5, 1, 2, 5, 10 and 20 mg/kg), a μ‐opioid receptor antagonist, and buprenorphine (0, 1, 2 or 4 mg/kg), a μ‐opioid receptor partial agonist, were each examined for their effects on the acquisition of methamphetamine consumption. Low methamphetamine drinking mice consumed more morphine compared to high methamphetamine drinking mice. Naltrexone did not alter methamphetamine consumption in either selected line; however, buprenorphine reduced methamphetamine intake in the high methamphetamine drinking line. These data show that greater sensitivity to opioids is associated with greater opioid intake and warrant further investigation of drugs with μ‐opioid receptor‐specific agonist activity in genetically determined differences in methamphetamine consumption.  相似文献   

7.
H Ujike  A Kanzaki  K Okumura  K Akiyama  S Otsuki 《Life sciences》1992,50(16):PL129-PL134
We have demonstrated for the first time that the sigma antagonist BMY 14802 prevents the development of behavioral sensitization induced by repeated administration of methamphetamine. Rats received an intraperitoneal injection of 15 or 30 mg/kg BMY 14802 followed by 2 mg/kg methamphetamine 30 min later. Unlike dopamine antagonists, BMY 14802 did not induce major changes in the acute motor effects of 2 mg/kg methamphetamine. Repeated administration of methamphetamine induced progressive augmentation of stereotyped behaviors and resulted in behavioral sensitization. However, repeated administration of methamphetamine in combination with BMY 14802 at either dose produced no increase in the intensity of stereotypy when compared with the first treatment. After a 7-day abstinence period, a challenge test with methamphetamine alone revealed supersensitivity of methamphetamine-sensitized rats to subsequent methamphetamine, whereas rats pretreated with repeated methamphetamine in combination with BMY 14802 exhibited no difference in the intensity of stereotypy from rats pretreated with repeated saline. These results suggest that sigma receptors play a crucial role in the induction of methamphetamine-induced sensitization.  相似文献   

8.
Methamphetamine epidemic has a broad impact on world’s health care system. Its abusive potential and neurotoxic effects remain a challenge for the anti-addiction therapies. In addition to oxidative stress, mitochondrial dysfunction and apoptosis, excitotoxicity is also involved in methamphetamine induced neurotoxicity. The N-methyl-D-aspartate (NMDA) type of glutamate receptor is thought to be one of the predominant mediators of excitotoxicity. There is growing evidence that NMDA receptor antagonists could be one of the therapeutic options to manage excitotoxicity. Amantadine, a well-tolerated and modestly effective antiparkinsonian agent, was found to possess NMDA antagonistic properties and has shown to release dopamine from the nerve terminals. The current study aimed to evaluate the effect of amantadine pre-treatment against methamphetamine induced neurotoxicity. Results showed that methamphetamine treatment had depleted striatal dopamine, generated of reactive oxygen species and decreased activity of complex I in the mitochondria. Interestingly, amantadine, at high dose (10 mg/kg), did not prevent dopamine depletion moreover it exacerbated the behavioral manifestations of methamphetamine toxicity such as akinesia and catalepsy. Only lower dose of amantadine (1 mg/kg) produced significant scavenging of the reactive oxygen species induced by methamphetamine. Overall results from the present study suggest that amantadine should not be used concomitantly with methamphetamine as it may results in excessive neurotoxicity.  相似文献   

9.
Kappa-opioid receptor agonists prevent alterations in dopamine neurotransmission that occur in response to repeated cocaine administration. The present microdialysis study examined whether administration of the selective kappa-opioid receptor agonist U69593 with methamphetamine prevents alterations in dopamine levels produced by neurotoxic doses of methamphetamine. Swiss Webster mice were injected intraperitoneally with methamphetamine (10.0 mg/kg) or saline, four times in 1 day, at 2-h intervals. Prior to the first and third injection, they received U69593 (0.32 mg/kg s.c.) or vehicle. Microdialysis was conducted 3, 7, or 21 days later. Basal and K+-evoked (60 and 100 mM) dopamine overflow were reduced 3 days after methamphetamine administration. These effects were long-lasting in that they were still apparent 7 and 21 days after methamphetamine treatment. Intrastriatal (5.0 and 50 microM) or systemic (1.0-10.0 mg/kg) administration of methamphetamine increased dopamine concentrations in control animals. In mice preexposed to methamphetamine, methamphetamine-evoked dopamine overflow was reduced. In animals that had received methamphetamine with U69593, basal dopamine levels did not differ from those of vehicle-treated controls. U69593 treatment attenuated the decrease in K+-evoked dopamine produced by prior methamphetamine exposure. The reduction in methamphetamine-evoked dopamine levels was also attenuated. The administration of U69593 alone did not modify basal or stimulus-evoked dopamine levels. These data demonstrate that repeated methamphetamine administration reduces presynaptic dopamine neuronal function in mouse striatum and that co-administration of a selective kappa-opioid receptor agonist with methamphetamine attenuates these effects. U69593 treatment did not modify the hyperthermic effects of methamphetamine, indicating that this kappa-opioid receptor agonist selectively attenuates methamphetamine-induced alterations in dopamine neurotransmission.  相似文献   

10.
Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. Repeated, intermittent treatment of mice with low doses of methamphetamine leads to the development of tolerance to its neurotoxic effects. The mechanisms underlying tolerance are not understood but clearly involve more than alterations in drug bioavailability or reductions in the hyperthermia caused by methamphetamine. Microglia have been implicated recently as mediators of methamphetamine-induced neurotoxicity. The purpose of the present studies was to determine if a tolerance regimen of methamphetamine would attenuate the microglial response to a neurotoxic challenge. Mice treated with a low-dose methamphetamine tolerance regimen showed minor reductions in striatal dopamine content and low levels of microglial activation. When the tolerance regimen preceded a neurotoxic challenge of methamphetamine, the depletion of dopamine normally seen was significantly attenuated. The microglial activation that occurs after a toxic methamphetamine challenge was blunted likewise. Despite the induction of tolerance against drug-induced toxicity and microglial activation, a neurotoxic challenge with methamphetamine still caused hyperthermia. These results suggest that tolerance to methamphetamine neurotoxicity is associated with attenuated microglial activation and they further dissociate its neurotoxicity from drug-induced hyperthermia.  相似文献   

11.
Endothelium-derived nitric oxide (NO) attenuates arteriolar constriction in the rat small intestine during periods of increased sympathetic nerve activity. This study was undertaken to test the hypothesis that a flow-dependent fall in arteriolar wall PO(2) serves as the stimulus for endothelial NO release under these conditions. Sympathetic nerve stimulation at 3-16 Hz induced frequency-dependent arteriolar constriction, with arteriolar wall O(2) tension (PO(2)) falling from 67 +/- 3 mmHg to as low as 41 +/- 6 mmHg. Arteriolar responses to nerve stimulation were enhanced after inhibition of NO synthase with N(G)-monomethyl-L-arginine (L-NMMA). Under a high-O(2) (20%) superfusate, the fall in wall PO(2) was significantly attenuated, arteriolar constrictions were increased by 57 +/- 9 to 66 +/- 12%, and these responses were no longer sensitive to L-NMMA. The high-O(2) superfusate had no effect on vascular smooth muscle responsiveness to NO (as judged by arteriolar responses to sodium nitroprusside) or on arteriolar wall oxidant activity (as determined by the reduction of tetranitroblue tetrazolium dye). These results indicate that a flow-dependent fall in arteriolar wall PO(2) may serve as a stimulus for the release of endothelium-derived NO during periods of increased sympathetic nerve activity.  相似文献   

12.
SOD2 (superoxide dismutase 2) plays a crucial role in protecting the cells against damage caused by free radicals, by catalyzing their detoxification. On the other hand, cell damage caused by free radical generation following methamphetamine administration has been postulated as one of the possible pathophysiological mechanisms for methamphetamine psychosis. Hence, we investigated the association of SOD2 polymorphisms with the development of methamphetamine psychosis, in two independent populations of Japan and Taiwan. We recruited 116 patients with methamphetamine psychosis and 189 controls in Japan, and 135 patients with methamphetamine psychosis and 204 controls in Taiwan. The methamphetamine group was divided into two clinical subtypes: a transient type of psychosis (i.e., good prognosis) and a prolonged type of psychosis (i.e., poor prognosis), according to the course of the manifestation of psychosis. With reference to the genotypic and allelic frequencies of Ala/Val functional polymorphism in exon 2, we found significant differences between individuals with prolonged methamphetamine psychosis and control samples from Japan and Taiwan in the genotypic (P value 0.014 and 0.016, respectively) and in the allelic (P value 0.004 and 0.047, respectively) frequencies. Our results suggest that Ala/Val polymorphism of the SOD2 gene could be associated with the risk of developing methamphetamine psychosis.  相似文献   

13.
In 25 adult diabetic patients, tissue fragments from myocardium were removed at necropsy and processed routinely. The morphometrical analysis was made using eye-piece ocular micrometer on a definite microscopic area. The arteriolar wall thickness increased from 5.10 mu +/- 1.71 in control group to 7.37 mu +/- 1.98 in the diabetic heart. The arterioles number decreased from 5.82/mm2 +/- 0.54 in the nondiabetics to 2.51/mm2 +/- 0.65 in the diabetic heart. The mean arteriolar diameter increased from 24.61 mu +/- 7.7 in the control group to 29.45 mu +/- 8.25 in the diabetic myocardium. The mean capillary diameter increased from 4.09 mu +/- 0.63 to 5.69 mu +/- 1.34 in diabetics. The capillaries number/mm2 decreased from 6.98 +/- 1.55 in the nondiabetics to 4.39 +/- 1.54 in diabetic patients. All differences, less the mean arteriolar diameter, are statistically significant. The following microscopical aspects were found in the small intramural coronary arteries: proliferation of endothelial cells with focal protuberances leading to partial narrowing of the lumen; increased thickness of the arteriolar wall due to fibrosis and accumulation of neutral mucopolysaccharides; alterations of elastic fibers. Frequently small areas of perivascular fibrosis and isolated foci of myocytolysis were found as well. These results suggest that the arteriolar impairment, especially the thickening of the arteriolar wall, could play a role in the pathogenesis of diabetic cardiomyopathy.  相似文献   

14.
In the current study, male quail were administered methamphetamine (3.0 or 5.6mg/kg IP) or saline once daily for 10 days and locomotor activity was assessed. Following a 31-day withdrawal period, sexual conditioning trials were conducted such that a conditioned stimulus (CS) was presented prior to a copulatory opportunity with a female quail. Male quail treated with methamphetamine (5.6mg/kg) showed a decrease in locomotor activity from Trial 1 to Trial 10 suggesting a potential tolerance effect. Following the 31-day withdrawal period, all male quail that received the CS paired with a copulatory opportunity showed enhanced approach to the CS, regardless of treatment history. Thus, chronic pre-exposure to methamphetamine did not alter sexual conditioning. In contrast, chronic pre-exposure to methamphetamine (3.0mg/kg) decreased the frequency of successful copulations suggesting that it impaired sexual performance. The findings suggest that methamphetamine may differentially affect the neural circuitry involved in motivational systems compared with those involved in consummatory aspects of sexual behavior. These effects may last long after drug cessation.  相似文献   

15.
An accurate, simple and rapid immunoassay is demonstrated for the detection of methamphetamine in urine by capillary electrophoresis (CE) with laser-induced fluorescence (LIF). An aminobutyl derivative of methamphetamine was conjugated with proteins, and used as an immunogen to produce antibodies for the assay. The methamphetamine derivative was also labeled with fluorescein isothiocyanate (FITC) to compete with free methamphetamine in the sample for the antibody binding site. Levels of free and antibody-bound FITC-labeled methamphetamine were monitored by performing CE–LIF using an untreated fused-silica column. This competitive immunoassay used antiserum instead of purified antibody or antibody fragment, yet was found to have good precision with a sensitivity of lower than 20 ng/ml. Various antibodies were also screened, and cross-reactivity of anti-MA antibody with methamphetamine analogues were also investigated. The results indicate that CE–LIF-based immunoassay is a powerful tool for the screening and characterization of antibody and may have possible applications in the detection of abused drugs in urine.  相似文献   

16.
Relapse rates following current methamphetamine abuse treatments are very high (∼40–60%), and the neuropsychiatric impairments (e.g., cognitive deficits, mood disorders) that arise and persist during remission from methamphetamine addiction likely contribute to these high relapse rates. Pharmacotherapeutic development of medications to treat addiction has focused on neurotransmitter systems with only limited success, and there are no Food and Drug Administration approved pharmacotherapies for methamphetamine addiction. A growing literature shows that methamphetamine alters peripheral and central immune functions and that immune factors such as cytokines, chemokines, and adhesion molecules play a role in the development and persistence of methamphetamine induced neuronal injury and neuropsychiatric impairments. The objective of this study was to evaluate the efficacy of a new immunotherapy, partial MHC/neuroantigen peptide construct (RTL551; pI-Ab/mMOG-35-55), in treating learning and memory impairments induced by repeated methamphetamine exposure. C57BL/6J mice were exposed to two different methamphetamine treatment regimens (using repeated doses of 4 mg/kg or 10 mg/kg, s.c.). Cognitive performance was assessed using the Morris water maze and CNS cytokine levels were measured by multiplex assay. Immunotherapy with RTL551 improved the memory impairments induced by repeated methamphetamine exposure in both mouse models of chronic methamphetamine addiction. Treatment with RTL551 also attenuated the methamphetamine induced increases in hypothalamic interleukin-2 (IL-2) levels. Collectively, these initial results indicate that neuroimmune targeted therapies, and specifically RTL551, may have potential as treatments for methamphetamine-induced neuropsychiatric impairments.  相似文献   

17.
Adolescence methamphetamine use is an issue of considerable concern due to its correlation with later delinquency, divorce, unemployment and health problems. Understanding how adolescents initiate methamphetamine abuse is important in developing effective prevention programs. We formulate a mathematical model for the spread of methamphetamine abuse using nonlinear ordinary differential equations. It is assumed that susceptibles are recruited into methamphetamine use through imitation. An epidemic threshold value, \({\mathcal {R}}_a\), termed the abuse reproduction number, is proposed and defined herein in the drug-using context. The model is shown to exhibit the phenomenon of backward bifurcation. This means that methamphetamine problems may persist in the population even if \({\mathcal {R}}_a\) is less than one. Sensitivity analysis of \({\mathcal {R}}_a\) was performed to determine the relative importance of different parameters in methamphetamine abuse initiation. The model is then fitted to data on methamphetamine users less than 20 years old reporting methamphetamine as their primary substance of abuse in the treatment centres of Cape Town and parameter values that give the best fit are chosen. Results show that the proportion of methamphetamine users less than 20 years old reporting methamphetamine as their primary substance of abuse will continue to decrease in Cape Town of South Africa. The results suggest that intervention programs targeted at reducing adolescence methamphetamine abuse, are positively impacting methamphetamine abuse.  相似文献   

18.
To investigate the relationship between skeletal muscle metabolism and arteriolar dilations in the region local to contracting muscle fibers as well as dilations at remote arteriolar regions upstream, we used a microelectrode on cremaster muscle of anesthetized hamsters to stimulate four to five muscle fibers lying approximately perpendicular to and overlapping a transverse arteriole. Before, during, and after muscle contraction, we measured the diameter of the arteriole at the site of muscle fiber overlap (local) and at a remote site approximately 1,000 microm upstream. Two minutes of 2-, 4-, or 8-Hz stimulation (5-10 V, 0.4-ms duration) produced a significant dilation locally (8.2 +/- 2.0-, 22.5 +/- 2.4-, and 30.9 +/- 2.1-microm increase, respectively) and at the remote site (4.2 +/- 0.8, 11.0 +/- 1.1, and 18.9 +/- 2.7 microm, respectively). Muscle contraction at 4 Hz initiated a remote dilation that was unaffected by 15-min micropipette application of either 2 microM tetrodotoxin, 0.07% halothane, or 40 microM 18-beta-glycyrrhetinic acid between the local and upstream site. Therefore, at the arteriolar level, muscle contraction initiates a robust remote dilation that does not appear to be transmitted via perivascular nerves or gap junctions.  相似文献   

19.
We compared two different methamphetamine dosing regimens and found distinct long-term behavioral and neurochemical changes. Adult rats were treated with 1-day methamphetamine injection (3x5 mg/kg s.c., 3 h apart) or 7-day methamphetamine minipump (20 mg/kg/day s.c.). The minipump regimen models the sustained methamphetamine plasma levels in some human bingers whereas the 1-day regimen models a naive user overdose. On withdrawal days 7 and 28, rats were acutely challenged with cocaine to test for behavioral sensitization and subsequently sacrificed for caudate and accumbens dopamine tissue content. Other rats were analyzed on withdrawal days 3, 7 or 28 using voltammetry in caudate slices. On withdrawal days 7 and 28, the methamphetamine injection but not the minipump rats showed behavioral cross-sensitization to cocaine. There was no change in baseline dopamine release, reuptake or sensitivity to quinpirole in any treatment group on either withdrawal day. However, consistent with the behavioral sensitization, cocaine had a greater effect in potentiating dopamine release and in blocking dopamine reuptake in methamphetamine injection versus saline irrespective of withdrawal day. The minipump group showed tolerance to the dopamine releasing effect of cocaine on withdrawal day 28 and had lower dopamine tissue content in the caudate versus the methamphetamine injection group. Dopamine turnover as measured by the DOPAC/dopamine ratio tended to be higher in the minipump-treated rats. These data suggest that the behavioral cross-sensitization seen in the methamphetamine injection rats could be in part due to the increased potency of cocaine in blocking dopamine reuptake and in increasing dopamine release. The decreased potency of cocaine in the caudate slices from the minipump-treated group may be related to decreased dopamine tissue content.  相似文献   

20.
Abstract : We recently demonstrated that pretreatment with N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine (DSP-4) exacerbates experimental parkinsonism induced by methamphetamine. The mechanism responsible for this effect remains to be elucidated. In this study, we investigated whether the exacerbation of chronic dopamine loss in DSP-4-pretreated animals is due to an impairment in the recovery of dopamine levels once the neurotoxic insult is generated or to an increased efficacy of the effects induced by methamphetamine. We administered different doses of methamphetamine either to DSP-4-pretreated or to intact Swiss-Webster mice and evaluated the methamphetamine-induced striatal dopamine loss at early and prolonged intervals. As a further step, we evaluated the striatal pharmacokinetics of methamphetamine, together with its early biochemical effects. We found that previous damage to norepinephrine terminals produced by DSP-4 did not modify the recovery of striatal dopamine levels occurring during several weeks after methamphetamine. By contrast, pretreatment with DSP-4 exacerbated early biochemical effects of methamphetamine, which were already detectable 1 h after methamphetamine administration. In addition, in norepinephrine-depleted animals, the clearance of striatal methamphetamine is prolonged, although the striatal concentration peak observed at 1 h is unmodified. These findings, together with the lack of a methamphetamine enhancement when DSP-4 was injected 12 h after methamphetamine administration, suggest that in norepinephrine-depleted animals, a more pronounced acute neuronal sensitivity to methamphetamine occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号