首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jason Quenneville 《BBA》2006,1757(8):1035-1046
Cytochrome c oxidase is a redox-driven proton pump which converts atmospheric oxygen to water and couples the oxygen reduction reaction to the creation of a membrane proton gradient. The structure of the enzyme has been solved; however, the mechanism of proton pumping is still poorly understood. Recent calculations from this group indicate that one of the histidine ligands of enzyme's CuB center, His291, may play the role of the pumping element. In this paper, we report on the results of calculations that combined first principles DFT and continuum electrostatics to evaluate the energetics of the key energy generating step of the model—the transfer of the chemical proton to the binuclear center of the enzyme, where the hydroxyl group is converted to water, and the concerted expulsion of the proton from δ-nitrogen of His291 ligand of CuB center. We show that the energy generated in this step is sufficient to push a proton against an electrochemical membrane gradient of about 200 mV. We have also re-calculated the pKa of His291 for an extended model in which the whole Fea3-CuB center with their ligands is treated by DFT. Two different DFT functionals (B3LYP and PBE0), and various dielectric models of the protein have been used in an attempt to estimate potential errors of the calculations. Although current methods of calculations do not allow unambiguous predictions of energetics in proteins within few pKa units, as required in this case, the present calculation provides further support for the proposed His291 model of CcO pump and makes a specific prediction that could be targeted in the experimental test.  相似文献   

2.
Energy diagrams and mechanism for proton pumping in cytochrome c oxidase   总被引:1,自引:0,他引:1  
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a(3) as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pK(a) values during the pumping process are derived for comparison to experiments.  相似文献   

3.
Electrostatic control of proton pumping in cytochrome c oxidase   总被引:2,自引:0,他引:2  
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

4.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

5.
A redox-coupled conformational change in Asp51 of subunit I and a hydrogen-bond network connecting Asp51 with the matrix surface have been deduced from X-ray structures of bovine heart cytochrome c oxidase. This has provided evidence that Asp51 may play a role in the proton pumping process. However, the lack of complete conservation of a residue analogous to Asp51, the inclusion of a peptide bond in the hydrogen-bonding network and the lack of apparent involvement of the O2 reduction site have been used as arguments against the involvement of Asp51 in the mechanism of proton pumping. This minireview re-examines these arguments.  相似文献   

6.
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.  相似文献   

7.
The H+/e- stoichiometry of reconstituted cytochrome c oxidase from bovine kidney, containing subunit VIaL (liver type), is 0.5 under standard conditions but 1.0 on addition of 1% cardiolipin to the lipid mixture (asolectin). Low concentrations of palmitate (half-maximal effect at 0.5 microm), but not laurate, myristate, stearate, oleate, 1-hexadecanol, palmitoyl glycerol and palmitoyl CoA, decreased the H+/e- ratio in the presence of cardiolipin from 1.0 to 0.5, accompanied by an increase of coupled, but not of uncoupled respiration of proteoliposomes. Cardiolipin and palmitate did not influence the H+/e- stoichiometry and respiration of reconstituted cytochrome c oxidase from bovine heart, containing subunit VIaH (heart-type). The H+/e- stoichiometry of the heart enzyme, however, is decreased from 1.0 to 0.5 by 5 mm intraliposomal ATP (instead of 5 mm ADP). It is assumed that palmitate binds to subunit VIaL. The partial uncoupling of proton pumping in cytochrome c oxidase is suggested to participate in mammalian thermogenesis.  相似文献   

8.
X-ray structures of bovine heart cytochrome c oxidase at 1.8/1.9 A resolution in the oxidized/reduced states exhibit a redox coupled conformational change of an aspartate located near the intermembrane surface of the enzyme. The alteration of the microenvironment of the carboxyl group of this aspartate residue indicates the occurrence of deprotonation upon reduction of the enzyme. The residue is connected with the matrix surface of the enzyme by a hydrogen-bond network that includes heme a via its propionate and formyl groups. These X-ray structures provide evidence that proton pumping occurs through the hydrogen bond network and is driven by the low spin heme. The function of the aspartate is confirmed by mutation of the aspartate to asparagine. Although the amino acid residues of the hydrogen bond network and the structures of the low spin heme peripheral groups are not completely conserved amongst members of the heme-copper terminal oxidase superfamily, the existence of low spin heme and the hydrogen bond network suggests that the low spin heme provides the driving element of the proton-pumping process.  相似文献   

9.
The mechanism for proton pumping in cytochrome c oxidase in the respiratory chain, has for decades been one of the main unsolved problems in biochemistry. However, even though several different suggested mechanisms exist, many of the steps in these mechanisms are quite similar and constitute a general consensus framework for discussing proton pumping. When these steps are analyzed, at least three critical gating situations are found, and these points are where the suggested mechanisms in general differ. The requirements for gating are reviewed and analyzed in detail, and a mechanism is suggested, where solutions for all the gating situations are formulated. This mechanism is based on an electrostatic analysis of a kinetic experiment fior the O to E transition. The key component of the mechanism is a positively charged transition state. An electron on heme a opens the gate for proton transfer from the N-side to a pump loading site (PLS). When the negative charge of the electron is compensated by a chemical proton, the positive transition state prevents backflow from the PLS to the N-side at the most critical stage of the pumping process. The mechanism has now been tested by large model DFT calculations, and these calculations give strong support for the suggested mechanism.  相似文献   

10.
In cytochrome c oxidase (CcO), a redox-driven proton pump, protons are transported by the Grotthuss shuttling via hydrogen-bonded water molecules and protonatable residues. Proton transport through the D-pathway is a complicated process that is highly sensitive to alterations in the amino acids or the solvation structure in the channel, both of which can inhibit proton pumping and enzymatic activity. Simulations of proton transport in the hydrophobic cavity showed a clear redox state dependence. To study the mechanism of proton pumping in CcO, multi-state empirical valence bond (MS-EVB) simulations have been conducted, focusing on the proton transport through the D-pathway and the hydrophobic cavity next to the binuclear center. The hydration structures, transport pathways, effects of residues, and free energy surfaces of proton transport were revealed in these MS-EVB simulations. The mechanistic insight gained from them is herein reviewed and placed in context for future studies.  相似文献   

11.
Cytochrome c oxidase is essential for aerobic life as a membrane-bound energy transducer. O(2) reduction at the haem a(3)-Cu(B) centre consumes electrons transferred via haem a from cytochrome c outside the membrane. Protons are taken up from the inside, both to form water and to be pumped across the membrane (M.K.F. Wikstr?m, Nature 266 (1977) 271; M. Wikstr?m, K. Krab, M. Saraste, Cytochrome Oxidase, A Synthesis, Academic Press, London, 1981 ). The resulting electrochemical proton gradient drives ATP synthesis (P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK, 1966 ). Here we present a molecular mechanism for proton pumping coupled to oxygen reduction that is based on the unique properties of water in hydrophobic cavities. An array of water molecules conducts protons from a conserved glutamic acid, either to the Delta-propionate of haem a(3) (pumping), or to haem a(3)-Cu(B) (water formation). Switching between these pathways is controlled by the redox-state-dependent electric field between haem a and haem a(3)-Cu(B), which determines the water-dipole orientation, and therefore the proton transfer direction. Proton transfer via the propionate provides a gate to O(2) reduction. This pumping mechanism explains the unique arrangement of the metal cofactors in the structure. It is consistent with the large body of biochemical data, and is shown to be plausible by molecular dynamics simulations.  相似文献   

12.
X-ray structures of bovine heart cytochrome c oxidase with bound respiratory inhibitors (O(2) analogues) have been determined at 1.8-2.05? resolution to investigate the function of the O(2) reduction site which includes two metal sites (Fe(a3)(2+) and Cu(B)(1+)). The X-ray structures of the CO- and NO-bound derivatives indicate that although there are three possible electron donors that can provide electrons to the bound O(2), located in the O(2) reduction site, the formation of the peroxide intermediate is effectively prevented to provide an O(2)-bound form as the initial intermediate. The structural change induced upon binding of CN(-) suggests a non-sequential 3-electron reduction of the bound O(2)(-) for the complete reduction without release of any reactive oxygen species. The X-ray structure of the derivative with CO bound to Cu(B)(1+) after photolysis from Fe(a3)(2+) demonstrates weak side-on binding. This suggests that Cu(B) controls the O(2) supply to Fe(a3)(2+) without electron transfer to provide sufficient time for collection of protons from the negative side of the mitochondrial membrane. The proton-pumping pathway of bovine heart cytochrome c oxidase includes a hydrogen-bond network and a water channel located in tandem between the positive and negative side of the mitochondrial membrane. Binding of a strong ligand to Fe(a3) induces a conformational change which significantly narrows the water channel and effectively blocks the back-leakage of protons from the hydrogen bond network. The proton pumping mechanism proposed by these X-ray structural analyses has been functionally confirmed by mutagenesis analyses of bovine heart cytochrome c oxidase. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

13.
Cytochrome c oxidase is a membrane-bound enzyme, which catalyses the one-electron oxidation of four molecules of cytochrome c and the four-electron reduction of O(2) to water. Electron transfer through the enzyme is coupled to proton pumping across the membrane. Protons that are pumped as well as those that are used for O(2) reduction are transferred though a specific intraprotein (D) pathway. Results from earlier studies have shown that replacement of residue Asn139 by an Asp, at the beginning of the D pathway, results in blocking proton pumping without slowing uptake of substrate protons used for O(2) reduction. Furthermore, introduction of the acidic residue results in an increase of the apparent pK(a) of E286, an internal proton donor to the catalytic site, from 9.4 to ~11. In this study we have investigated intramolecular electron and proton transfer in a mutant cytochrome c oxidase in which a neutral residue, Thr, was introduced at the 139 site. The mutation results in uncoupling of proton pumping from O(2) reduction, but a decrease in the apparent pK(a) of E286 from 9.4 to 7.6. The data provide insights into the mechanism by which cytochrome c oxidase pumps protons and the structural elements involved in this process.  相似文献   

14.
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a3 as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pKa values during the pumping process are derived for comparison to experiments.  相似文献   

15.
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.  相似文献   

16.
Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

17.
P M Li  J E Morgan  T Nilsson  M Ma  S I Chan 《Biochemistry》1988,27(19):7538-7546
It has been previously reported that mild heat treatment (43 degrees C for ca. 60 min) abolishes the proton pumping activity of cytochrome c oxidase while leaving the oxidase activity and cytochromes a and a3 unperturbed [Sone, N., & Nicholls, P. (1984) Biochemistry 23, 6550-6554]. We herein describe the effects of this heat treatment on the electron paramagnetic resonance (EPR) and optical absorption signatures of the redox-active metal centers in the enzyme. We find that heat treatment of the oxidized enzyme causes a local structural perturbation at the CuA site. After heat treatment, the enzyme sample contains three subpopulations, each of which has a different structure at CuA. These include (i) native CuA, (ii) a type 2 copper species similar to the one produced by chemical modification by p-(hydroxymercuri)benzoate (pHMB) [Gelles, J., & Chan, S. I. (1985) Biochemistry 24, 3963-3972], and (iii) a novel type 1 copper species. In addition to changes at the CuA site, we find that heat treatment results in accelerated cyanide binding and the removal of subunit III. If the cytochrome c oxidase is heat treated while fully reduced, none of these changes are observed except for subunit III depletion. Furthermore, partial (CO mixed-valence derivative) reduction of the enzyme as well as ligand binding to cytochrome a3 also protects the enzyme against the heat-induced changes, indicating that the oxygen binding site plays a role in stabilizing the CuA site against structural perturbations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
T Nilsson  J Gelles  P M Li  S I Chan 《Biochemistry》1988,27(1):296-301
Cytochrome c oxidase in which the CuA site has been perturbed by extensive modification of the enzyme with the thiol reagent p-(hydroxymercuri)benzoate has been reconstituted into phospholipid vesicles. The reconstituted vesicles lack respiratory control, and the orientation of the enzyme in the vesicles is similar to that of the native cytochrome c oxidase. In the proton translocation assay, the vesicles containing the modified enzyme behave as if they are unusually permeable to protons. When the modified and native proteins were coreconstituted, a substantial portion of the latter became uncoupled as revealed by low respiratory control and low overall proton pumping activity. These results suggest that the modified enzyme catalyzes a passive transport of protons across the membrane. When milder conditions were used for the chemical modification, a majority of the thiols reacted while the CuA site remained largely intact. Reconstitution of such a partially modified cytochrome c oxidase produced vesicles with respiratory control and proton translocating activity close to those of reconstituted native enzyme. It thus appears that the appearance of a proton leak is related to the perturbation of the CuA site. These observations suggest that the structure of CuA may be related to the role of this site in the proton pumping machinery of cytochrome c oxidase.  相似文献   

19.
20.
The functional significance of the metal centres of cytochrome oxidase is deduced from the ways in which the centres are bound into its peptides. To this end use is made of structural knowledge of other metalloproteins for dioxygen binding, haemocyanin and haemoglobin, and for electron transfer, cytochromes b and azurin. The order and manner in which the motions of helical sections of the oxidase are linked to proton pumping are suggested and a comparison is made with other proton pumps, for example that of ATP synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号