首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bruton X-linked agammaglobulinemia (XLA) is a phenotypically recessive genetic disorder of B lymphocyte development. Female carriers of XLA, although asymptomatic, have a characteristic B cell lineage-specific skewing of the pattern of X inactivation. Skewing apparently results from defective growth and maturation of B cell precursors bearing a mutant active X chromosome. In this study, carrier status was tested in 58 women from 22 families referred with a history of agammaglobulinemia. Primary carrier analysis to examine patterns of X inactivation in CD19+ peripheral blood cells (B lymphocytes) was conducted using quantitative PCR at the androgen-receptor locus. Obligate carriers of XLA demonstrated > 95% skewing of X inactivation in peripheral blood CD19+ cells but not in CD19- cells. Carrier status for mothers of isolated affected males could be assessed in 10 of 11 families: 7 women showed skewing, and 3 did not. Five carriers were found in six families in which there were no living affected males. Among all those tested, one individual's carrier status was considered to be indeterminate and five women were noninformative for the carrier test. Results obtained by the carrier test were congruent with linkage analysis (where applicable) using the RFLPs DXS178 and DXS94 and two newly developed polymorphic microsatellite markers, DXS178CA and DXS101AAT. Refinements in techniques for primary carrier testing and genetic mapping of XLA now make possible an ordered approach to diagnosis, prenatal diagnosis, and genetic counseling.  相似文献   

2.
3.
Summary By in situ hybridization, Y-specific DNA sequences were localized on Xp22.3-Xpter of one of the two X chromosomes in all of eleven XX males studied. In nine of the cases the presence of the Y-specific DNA did not affect random X inactivation in fibroblasts. Fibroblasts of the other two cases showed a preferential inactivation of the Y DNA-carrying X chromosome. In only one of these two exceptions blood lymphocytes could also be studied, and here, random inactivation of the Y DNA-carrying X chromosome occurred. Furthermore, the gene dosage of steroid sulfatase (STS) was examined by Southern blot analysis. In ten of the cases including the one showing random X-inactivation in lymphocytes but not in fibroblasts, a double dosage of the STS gene is present. The remaining case with non-random inactivation shows a single STS gene dosage. This case was reported previously to have STS enzyme activity in the male range. It is assumed that, as a consequence of an unequal X-Y interchange, a deletion of X-specific DNA sequences may result in the preferential inactivation of the Y DNA-carrying X chromosome.  相似文献   

4.
We have begun a search for heritable variation in X-chromosome inactivation pattern in normal females to determine whether there is a genetic effect on the imprinting of X-chromosome inactivation in humans. We have performed a quantitative analysis of X-chromosome inactivation in lymphocytes from mothers in normal, three-generation families. Eight mothers and 12 grandmothers exhibited evidence of highly skewed patterns of X-chromosome inactivation. We observed that the male offspring of females with skewed X-inactivation patterns were three times more likely to inherit alleles at loci that were located on the inactive X chromosome (Xi) than the active X chromosome (Xa). The region of the X chromosome for which this phenomenon was observed extends from XP11 to -Xq22. We have also examined X-chromosome inactivation patterns in 21 unaffected mothers of male bilateral sporadic retinoblastoma patients. Six of these mothers had skewed patterns of X-chromosome inactivation. In contrast to the tendency for male offspring of skewed mothers from nondisease families to inherit alleles from the inactive X chromosome, five of the six affected males inherited the androgen receptor alleles from the active X chromosome of their mother. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The human androgen-receptor gene (HUMARA; GenBank) contains a highly polymorphic trinucleotide repeat in the first exon. We have found that the methylation of HpaII and HhaI sites less than 100 bp away from this polymorphic short tandem repeat (STR) correlates with X inactivation. The close proximity of the restriction-enzyme sites to the STR allows the development of a PCR assay that distinguishes between the maternal and paternal alleles and identifies their methylation status. The accuracy of this assay was tested on (a) DNA from hamster/human hybrid cell lines containing either an active or inactive human X chromosome; (b) DNA from normal males and females; and (c) DNA from females showing nonrandom patterns of X inactivation. Data obtained using this assay correlated substantially with those obtained using the PGK, HPRT, and M27 beta probes, which detect X inactivation patterns by Southern blot analysis. In order to demonstrate one application of this assay, we examined X inactivation patterns in the B lymphocytes of potential and obligate carriers of X-linked agammaglobulinemia.  相似文献   

6.
In mammals, inactivation of one X chromosome in the female equalizes gene dosages between XX females and XY males. Two noncoding loci, Tsix and Xite, together regulate X chromosome fate by controlling homologous chromosome pairing, counting, and mutually exclusive choice. Following choice, the asymmetry of Xite and Tsix expression drives divergent chromosome fates, but how this pattern becomes established is currently unknown. Although no proven trans-acting factors have been identified, a likely candidate is Ctcf, a chromatin insulator with essential function in autosomal imprinting. Here, we search for trans-factors and identify Yy1 as a required cofactor for Ctcf. Paired Ctcf-Yy1 elements are highly clustered within the counting/choice and imprinting domain of Tsix. A deficiency of Yy1 leads to aberrant Tsix and Xist expression, resulting in a deficit of male and female embryos. Yy1 and Ctcf associate through specific protein-protein interactions and together transactivate Tsix. We propose that the Ctcf-Yy1-Tsix complex functions as a key component of the X chromosome binary switch.  相似文献   

7.
Recently developed techniques for the direct analysis of DNA have made possible the determination of patterns of cellular X-chromosome inactivation. These techniques provide a potential method for carrier detection for several X-linked human disorders in which obligate carriers show nonrandom X inactivation. By using restriction fragment length polymorphic (RFLP) gene-specific probes in conjunction with methylation-sensitive enzymes, we have characterized the patterns of X-chromosome inactivation in cell subsets from females belonging to 10 kindreds segregating for the X-linked immune deficiency disorder Wiskott-Aldrich syndrome (WAS). We show that selective inactivation of the X chromosome distinguishes obligate WAS carriers from noncarrier females and constitutes a valuable marker of the WAS carrier state. Selective inactivation phenomena were observed in the monocytes and T and B lymphocytes of obligate carriers, implying that the WAS gene defect is expressed in each of these cellular lineages. In conjunction with the use of linked DNA markers, RFLP-methylation analysis should render carrier detection feasible for the majority of females from WAS families. The results of such analyses also provide an initial step toward identifying the cellular level and molecular basis for WAS.  相似文献   

8.
X inactivation Xplained   总被引:4,自引:0,他引:4  
Random inactivation of one of the two female X chromosomes establishes dosage compensation between XY males and XX females in placental mammals. X inactivation is controlled by the X inactivation center (Xic). Recent advances in genome sequencing show that the Xic has evolved from an ancestral vertebrate gene cluster in placental mammals and has undergone separate rearrangements in marsupials. The Xic ensures that all but one X chromosome per diploid genome are inactivated. Which chromosome remains active is randomly chosen. Pairing of Xic loci on the two X chromosomes and alternate states of the X chromosomes before inactivation have recently been implicated in the mechanism of random choice. Chromosome-wide silencing is then initiated by the noncoding Xist RNA, which evolved with the mammalian Xic and covers the inactive X chromosome.  相似文献   

9.
The mechanism of profound generalized iduronate sulfatase (IDS) deficiency in a developmentally delayed female with clinical Hunter syndrome was studied. Methylation-sensitive RFLP analysis of DNA from peripheral blood lymphocytes from the patient, using MspI/HpaII digestion and probing with M27 beta, showed that the paternal allele was resistant to HpaII digestion (i.e., was methylated) while the maternal allele was digested (i.e., was hypomethylated), indicating marked imbalance of X-chromosome inactivation in peripheral blood lymphocytes of the patient. Similar studies on DNA from maternal lymphocytes showed random X-chromosome inactivation. Among a total of 40 independent maternal fibroblast clones isolated by dilution plating and analyzed for IDS activity, no IDS- clone was found. Somatic cell hybrid clones containing at least one active human X chromosome were produced by fusion of patient fibroblasts with Hprt- hamster fibroblasts (RJK88) and grown in HAT-ouabain medium. Methylation-sensitive RFLP analysis of DNA from the hybrids showed that of the 22 clones that retained the DXS255 locus (M27 beta), all contained the paternal allele in the methylated (active) form. No clone was isolated containing only the maternal X chromosome, and in no case was the maternal allele hypermethylated. We postulate from these studies that the patient has MPS II as a result of a mutation resulting in both the disruption of the IDS locus on her paternal X chromosome and unbalanced inactivation of the nonmutant maternal X chromosome.  相似文献   

10.
The genus Erythrinus belongs to the family Erythrinidae, a neotropical fish group. This genus contains only two described species, Erythrinus erythrinus being the most widely distributed in South America. Six samples of this species from five distinct Brazilian localities and one from Argentina were studied cytogenetically. Four groups were identified on the basis of their chromosomal features. Group A comprises three samples, all with 2n = 54 chromosomes, a very similar karyotypic structure, and the absence of chromosome differentiation between males and females. One sample bears up to four supernumerary microchromosomes, which look like 'double minute chromosomes' in appearance. Groups B-D comprise the three remaining samples, all sharing an X(1)X(1)X(2)X(2)/X(1)X(2)Y sex chromosome system. Group B shows 2n = 54/53 chromosomes in females and males, respectively, and also shows up to three supernumerary microchromosomes. Groups C and D show 2n=52/51 chromosomes in females and males, respectively, but differ in the number of metacentric, subtelocentric, and acrocentric chromosomes. In these three groups (B-D), the Y is a metacentric chromosome clearly identified as the largest in the complement. The present results offer clear evidence that local samples of E. erythrinus retain exclusive and fixed chromosomal features, indicating that this species may represent a species complex.  相似文献   

11.
A large pericentric inversion of the X chromosome [inv(X)(p22.31q26.3)] was found to be transmitted in four generations through phenotypically normal males and females. In one female carrier, the inv(X) was late replicating in 70% of lymphocytes and 46% of skin fibroblasts. Steroid sulfatase (STS), an enzyme which normally escapes inactivation has been located to Xp22.32 and, in our case, has been moved to an aberrant position. We have assayed its activity in clones with the inv(X) inactive or the normal X inactive and found no significant differences. Thus, the STS locus escaped X inactivation in both the normal and the inverted X chromosomes. A review of the literature shows that almost half of the breakpoints on the short arm are found at region p22 and we propose that low-copy repetitive DNA segments along the X chromosome are responsible for non-homologous pairing and production of inversions.  相似文献   

12.
The frequencies of chromosome and chromatid breaks and gaps were studied in blood lymphocytes of three groups of individuals: 21 males with X-linked mental retardation characterized by fragile X chromosome; 52 males with non-differentiated X-linked mental retardation having no fra(X) chromosome in their cells; 15 intellectually normal males. The lymphocytes were cultured both in medium 199 and in Eagle's medium supplemented with fluoro-deoxyuridine. The significantly higher frequencies of various autosomal lesions were observed in the individuals with the fragile X chromosome syndrome and in those with mental retardations without fra(X) chromosome, in comparison with normal males. The significant difference in some autosome lesions was also found between both groups of the patients. The distribution of chromosome lesions in autosomes of different groups was significantly higher in chromosomes A and lower in groups B, E, F and G, than expected in accordance with their relative length in the haploid set. In all the groups of individuals studied, the predominant localization of chromosome and chromatid breaks and gaps was observed in fragile sites 1p31, 3p14, 6q26 and 16q23.  相似文献   

13.
Dosage compensation for the mammalian X chromosome involves the silencing of one X chromosome to achieve equal X-linked gene expression between males and females. X chromosome inactivation (XCI) is controlled by a complex set of genetic elements located in a region known as the X chromosome inactivation center, and is regulated by a combination of genomic imprinting, cell lineage-dependent erasure of imprinting, an unidentified mechanism of X chromosome counting, an incompletely understood means of selection of one X chromosome for inactivation and developmentally regulated changes in X chromosome chromatin. A detailed understanding of when and how these components of XCI occur is essential for elucidating the operative mechanisms. A model accounting for early events related to XCI, including observations in uniparental and aneuploid embryos, is presented.  相似文献   

14.
X inactivation has evolved in the soma of mammalian females so that both sexes have the same ratio of X:autosomal gene expression. The X chromosome in the germ cells of XY males is also precociously inactivated for reasons that remain unclear. Unlike X inactivation in the soma, this germline X inactivation is not restricted to mammals but has evolved independently in several animal phyla. Thus, germline X inactivation might have been the precursor of somatic X inactivation in mammals. We now propose a hypothesis for the evolution of germline X inactivation. The hypothesis predicts a redistribution of late spermatogenic genes from the X chromosome to the autosomes, leading eventually to germline X inactivation as the X chromosome becomes 'demasculinized'. Sexual antagonism could be the mechanism driving this redistribution. Recent expression and genetic studies in mammals, nematodes and Drosophila support this hypothesis, and expression data on taxa that have not evolved germline X inactivation, such as birds and butterflies, should shed further light on it.  相似文献   

15.
16.
BACKGROUND: The diagnosis of X-linked agammaglobulinemia (XLA) is not always clearcut. Not all XLA conform to the classic phenotype and less than 50% of affected boys have a family history of immunodeficiency. Mutations in the gene for Bruton's tyrosine kinase (BTK) are responsible for the majority of agammaglobulinemia cases. However, a certain proportion of patients may have mutations involving other genes, although they show with an XLA phenotype. We performed BTK gene mutation analysis in 37 males with presumed XLA and analyzed the pattern of X-chromosome inactivation (XCI) in 31 mothers to evaluate the relevance of these approaches to diagnosis and genetic counseling. MATERIALS AND METHODS: Twenty affected males with a sporadic occurrence and 17 familial cases belonging to nine families were enrolled within the framework of the Italian Multicenter Clinical Study on XLA. We used non-isotopic RNase cleavage assay (NIRCA), followed by cDNA sequence determination to screen for BTK mutations and X-chromosome inactivation analysis for carrier detection. RESULTS: Using the cDNA-based approach, the identification of BTK gene abnormalities confirmed the clinical diagnosis of XLA in 31 of 37 affected infants. Missense was the most frequent mutational event and the kinase domain was mostly involved. In addition, nine novel mutations were identified. In sporadic cases, BTK gene abnormalities were identified in 9 out of 10 patients whose mothers had a nonrandom pattern of XCI and in 5 out of 6 patients whose mother had a random pattern of XCI. With the exception of one family, all patients with a familial occurrence and born to mothers with a nonrandom pattern of XCI had mutations of the BTK gene. CONCLUSIONS: Our findings indicate that in sporadic cases BTK gene sequencing is the only reliable tool for a definitive diagnosis of XLA and support XCI as the first diagnostic tool in the mothers of affected males in multiple generations. Furthermore, our molecular analysis confirms that 10-20% of BTK-unaltered patients have disorders caused by defects in other genes.  相似文献   

17.
The mammalian epigenetic phenomena of X inactivation and genomic imprinting are incompletely understood. X inactivation equalizes X-linked expression between males and females by silencing genes on one X chromosome during female embryogenesis. Genomic imprinting functionally distinguishes the parental genomes, resulting in parent-specific monoallelic expression of particular genes. N-ethyl-N-nitrosourea (ENU) mutagenesis was used in the mouse to screen for mutations in novel factors involved in X inactivation. Previously, we reported mutant pedigrees identified through this screen that segregate aberrant X-inactivation phenotypes and we mapped the mutation in one pedigree to chromosome 15. We now have mapped two additional mutations to the distal chromosome 5 and the proximal chromosome 10 in a second pedigree and show that each of the mutations is sufficient to induce the mutant phenotype. We further show that the roles of these factors are specific to embryonic X inactivation as neither genomic imprinting of multiple genes nor imprinted X inactivation is perturbed. Finally, we used mice bearing selected X-linked alleles that regulate X chromosome choice to demonstrate that the phenotypes of all three mutations are consistent with models in which the mutations have affected molecules involved specifically in the choice or the initiation of X inactivation.  相似文献   

18.
A young woman with normal gonadal development and mild mental retardation was found to have a small de novo interstitial deletion of most of band Xp21, karyotype designation 46,X,del(X) (pter----p21.3:: p21.1----qter). Replication studies on lymphocytes and skin fibroblasts revealed that in 45% of cells the normal X was late replicating. Somatic cell hybrids between her fibroblasts and HPRT-deficient Chinese hamster cells were obtained and selected for and against retention of the active human X chromosome. In several independent hybrids the deleted X was retained in the active state. Partial ornithine transcarbamylase (ornithine carbamoyltransferase EC 2.1.3.3) (OTC) deficiency was documented by elevated urinary orotic acid excretion and increased serum glutamine after a protein load. This confirms the mapping of the structural gene for OTC to this deletion. Testing of neutrophil function revealed heterozygosity for chronic granulomatous disease (CGD) suggesting that a gene for CGD maps within the deletion. Thus, X inactivation mosaicism is also present in hepatocytes and neutrophilic granulocytes. Random X inactivation in a female with an Xp deletion has not been previously reported. The cells from this patient and the somatic cell hybrids containing her deleted X chromosome in the absence of the normal X provide material for the precise mapping of X linked genes and DNA sequences on the short arm of the human X chromosome.  相似文献   

19.
哺乳动物X染色体失活机制   总被引:6,自引:0,他引:6  
哺乳动物X染色体连锁基因的剂量平衡,是通过雌性胚胎发育早期随机或印记失活一条X染色体来实现的,这是一个复杂的过程,包括:启动、计数、选择、维持等一系列的步骤。X染色体失活中心是X染色体失活的主控开关座位,调节X失活的早期事件,失活发生后,X染色体的失活状态可稳定地存在并传递给后代,这一过程涉及基因组印记的形成。此外,在雄性动物,精原细胞减数分裂早期也存在着短暂的X染色体失活现象。现对哺乳动物X染色体失活机制的最新进展进行综述。  相似文献   

20.
Studies on aneuploidy have shown that the X is the most frequently lost chromosome in females, and that the number of X chromosome-positive micronuclei increases with age in women. Recently, we showed that the inactive X chromosome is incorporated preferentially in micronuclei. The objectives of the current study were, firstly, to determine the incidence of X chromosome incorporation into micronuclei in males and, secondly, to determine the incidence of X chromosome incorporation into micronuclei of females with Turner syndrome. Blood samples were obtained from 18 male newborns and 35 normal adult males ranging in age from 22 to 79 years and from seven women with non-mosaic Turner syndrome aged 11–39 years. Isolated lymphocytes were cultured in the presence of cytochalasin B and 2000 binucleated cells per subject were scored for micronuclei. Cells were then hybridized with the biotinylated X centromere-specific probe, pBamX7, and visualized with fluorescein-conjugated avidin. All micronucleated cells were relocated and evaluated for the presence or absence of the X chromosome. Of the 335 micronuclei observed, 6.6% (22/335) contained an X chromosome. Analysis of variance shows a statistically significant increase, for both males and Turner females, in the number of X chromosome-positive micronuclei with age (P < 0.001). These data also show that the X chromosome is included in micronuclei from males more often than would be expected by chance (P < 0.005; χ2 analysis, 15 df). Here we show that there is a tenfold difference in the frequency of X chromosome-positive micronuclei in 46,XX females compared to 46,XY males and 45,X females, providing further support to our previous finding that the X chromosome in micronuclei is the inactive chromosome. Received: 29 April 1997 / Accepted: 9 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号