首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Polyamines play essential functions in many aspects of cell biology. Plasma membrane transport systems for the specific uptake of polyamines exist in most eukaryotic cells but have been very recently identified at the molecular level only in the parasite Leishmania. We now report that the high affinity polyamine permease in Saccharomyces cerevisiae is identical to Agp2p, a member of the yeast amino acid transporter family that was previously identified as a carnitine transporter. Deletion of AGP2 dramatically reduces the initial velocity of spermidine and putrescine uptake and confers strong resistance to the toxicity of exogenous polyamines, and transformation with an AGP2 expression vector restored polyamine transport in agp2delta mutants. Yeast mutants deficient in polyamine biosynthesis required >10-fold higher concentrations of exogenous putrescine to restore cell proliferation upon deletion of the AGP2 gene. Disruption of END3, a gene required for an early step of endocytosis, increased the abundance of Agp2p, an effect that was paralleled by a marked up-regulation of spermidine transport velocity. Thus, AGP2 encodes the first eukaryotic permease that preferentially uses spermidine over putrescine as a high affinity substrate and plays a central role in the uptake of polyamines in yeast.  相似文献   

2.
The ATPase activity of PotA, a component of the spermidine-preferential uptake system consisting of PotA, -B, -C, and -D, was studied using purified PotA and a PotABC complex on inside-out membrane vesicles. It was found that PotA can form a dimer by disulfide cross-linking but that each PotA molecule functions independently. When PotA was associated with the membrane proteins PotB and PotC, the K(m) value for ATP increased and PotA became much more sensitive to inhibition by spermidine. It was also shown that spermidine uptake in cells was gradually inhibited in parallel with spermidine accumulation in cells. The results suggest that spermidine functions as a feedback inhibitor of spermidine transport. The function of PotA was analyzed using PotA mutants obtained by random mutagenesis. There are two domains in PotA. The NH2-terminal domain (residues 1-250) contains the ATP binding pocket formed in part by residues Cys26, Phe27, Phe45, Cys54, Leu60, and Leu76, the active center of ATPase that includes Val135 and Asp172, and amino acid residues necessary for the interaction with a second PotA subunit (Cys26) and with PotB (Cys54). The COOH-terminal domain (residues 251-378) of PotA contains a site that regulates ATPase activity and a site involved in the spermidine inhibition of ATPase activity.  相似文献   

3.
Requirement of Polyamines for Bacterial Division   总被引:8,自引:6,他引:2       下载免费PDF全文
Synchronous cell division in an arginine auxotroph and a histidine auxotroph of Escherichia coli was obtained after starving for the required amino acid for 1 hr. However, cell division was not synchronized after starvation for 1 hr in another arginine auxotroph. This difference is proposed to depend on differences in the concentrations of polyamines in the cells. During amino acid starvation the ratio of putrescine concentration to spermidine concentration decreased in all strains, but it recovered afterward more rapidly in the third strain than in the other two. The cells divided when the ratio returned to normal in the Arg(-) mutants. Added putrescine permitted some of the cells of the first two mutants to divide sooner after amino acid starvation and thus eliminated synchrony. Spermidine added alone had no effect, but, when it was added together with putrescine, it restored synchronous division. Synchrony was established in the third mutant by adding spermidine after arginine starvation. Thus, both the variations in polyamine content and the effects of added polyamines suggest that the polyamines are essential in permitting cell division. We suggest that the molar ratio of putrescine to spermidine can be a critical factor for cell division. This effect of polyamines seems to be specific for cell division. Amino acid starvation does not induce delays in subsequent mass increase or deoxyribonucleic acid synthesis. Possible mechanisms of polyamine action are discussed.  相似文献   

4.
Summary. In 3T3 cells temperatures higher than physiological stimulated amino acid transport activity in a dose-dependent manner up to 44°C. However, the temperature increase did not induce widespread transport increase of all other nutrients tested. The activities of both amino acid transport systems A and ASC were enhanced within a few minutes following cell exposure to increased temperature. The maintenance of this effect required continuous exposure of the cells to hyperthermia. Kinetic analysis indicated that the stimulation of the activity of transport System A occurred through a mechanism affecting Vmax rather than Km. The continuous presence of cycloheximide did not prevent the transport changes induced by hyperthermia. These results suggest that the increased amino acid uptake reflects an activation or relocation of existing amino acid transport proteins. During the hyperthermic treatment, the content of ninhydrin-positive substances (NPS), mostly amino acids, increased within the cells and the accumulation of these compatible osmolytes was parallelled by an increase in cell volume. The withdrawal of amino acids from the culture medium immediately before and during the shock phase counteracted the increase and reduced the NPS content but did not prevent the increase in amino acid transport, the cell swelling and the induction of the heat shock response. Received June 30, 1999 Accepted July 27, 2000  相似文献   

5.
6.
Tumor associated gene-1/L amino acid transporter-1 (TA1/LAT-1) was recently identified as a light chain of the CD98 amino acid transporter and cellular activation marker. Our previous studies with primary rat hepatocyte cultures demonstrated that TA1 RNA levels were responsive to media amino acid concentrations, suggesting adaptive regulation. High level TA1 expression associated with transformed cells also suggested a role in tumor progression. The present study examined the relationship of TA1/CD98 expression, adaptive response, and associated amino acid transport to neoplastic transformation using a panel of well characterized rat hepatic cell lines. We found 1) increased expression of TA1 in response to amino acid depletion, specific for arginine but not glutamine; 2) loss of TA1 response to arginine in gamma-glutamyl transpeptidase-positive transformed and tumorigenic cells; 3) no appreciable response of 4F2/CD98 heavy chain to arginine levels; and 4) correlation of system L amino acid transport activity in response to arginine with changes in TA1/LAT-1 mRNA but not total immunoreacting protein. Our results suggest this CD98 light chain may act as an environmental sensor, responding to amino acid availability and that its regulation is complex. We hypothesize that altered TA1 expression is an early event in hepatocarcinogenesis giving neoplastic cells a growth or survival advantage, particularly under conditions of limited amino acid availability.  相似文献   

7.
The nucleotide sequence of the gene for the spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome was determined. It contained four open reading frames encoding A, B, C, and D proteins. By making several subclones, we showed that expression of all the four proteins was necessary for maximal spermidine and putrescine transport activity. A single transport system was involved in the transport of both spermidine and putrescine. The A protein (Mr 43K) was found to be associated with membranes, as shown by Western blot analysis of the cell fractions. In addition, it had consensus amino acid sequences for the nucleotide binding site. B (Mr 31K) and C (Mr 29K) proteins consisted of six putative transmembrane spanning segments linked by hydrophilic segments of variable length as shown by cell localization of the proteins synthesized in maxicells and by hydropathy profiles. D protein (Mr 39K) was inferred to be a polyamine binding protein existing in a periplasmic fraction from the results of Western blot analysis of the cell fractions and from measurements of polyamine binding to the protein. These results indicate that the spermidine and putrescine transport system can be defined as a bacterial periplasmic transport system.  相似文献   

8.
9.
Summary Transport, unidirectional flux, of a monosaccharide, a nucleoside and three amino acids, all of which enter cells by independent, discrete carriers, was compared at three stages of erythroid maturation, the normal (anucleate) mouse erythrocyte, and in differentiated and undifferentiated Friend erythroleukemia cells. We found specific transport alterations during this developmental program. Transport of 3-O-methylglucose increased with each successive developmental stage. Aminoisobutyrate transport was maintained during Friend cell differentiation, but fell slightly in erythrocytes. Leucine, lysine and uridine transport began to fall two days after dimethylsulfoxide exposure, and diminished further in red cells. These studies of transport are not directly comparable to uptake studies reported by others.Median cell volume and thus surface area decreased more during differentiation than amino acid transport declined, so flux, transport past a unit area of membrane, actually increased. Monosaccharide flux also increased. Only uridine transport fell in parallel to surface area. Perhaps sites for nutrient transport required for energy production are preferentially maintained.  相似文献   

10.
Intracellular glutathione was increased by 80% after exposure of bovine pulmonary arterial endothelial cells to 80% O2 (hyperoxia) for 24 h. No change in glutathione occurred in cells exposed to hypoxia (3% O2) for a corresponding period of time. The rate of uptake of [3H]glutamic acid also increased by 35-55% after 24 h of exposure of cells to hyperoxia, whereas exposure to hypoxia had no effect on the [3H]glutamic acid uptake. The increase in glutamic acid uptake reflected a specific effect on amino acid transport systems rather than a change in cell membrane permeability. The major portion of the increased uptake was inhibited by the elimination of sodium and the addition of the competitive inhibitor, cystine, to the incubation medium. Thus increases in glutamic acid uptake parallel increases in cellular glutathione, and glutamic acid may be a regulating factor in the increase in glutathione after exposure to hyperoxia.  相似文献   

11.
A series of novel spermine dimer analogues was synthesized and assessed for their ability to inhibit spermidine transport into MDA-MB-231 breast carcinoma cells. Two spermine molecules were tethered via their N(1) primary amines with naphthalenedisulfonic acid, adamantanedicarboxylic acid and a series of aliphatic dicarboxylic acids. The linked spermine analogues were potent polyamine transport inhibitors and inhibited cell growth cytostatically in combination with a polyamine synthesis inhibitor. Variation in the linker length did not alter polyamine transport inhibition. The amount of charge on the molecule may influence the molecular interaction with the transporter since the most potent spermidine transport inhibitors contained 5-6 positive charges.  相似文献   

12.
The transport of selected neutral amino acids known as good substrates of amino acid transport System L has been studied in chick embryo fibroblasts exposed for 4 hours to hyperosmolar culture medium. The activity of the L system, as measured by initial rates of L-phenylalanine uptake, increased in hyperosmolarity treated cells when determined before any cell depletion of intracellular amino acids. This effect was lost after depletion but reappeared after reloading the cells with pertinent substrates of System L. This transport activity appeared to be related to the internal level of amino acids capable of exchange through System L. In hyperosmolarity-treated chick embryo fibroblasts a higher level of System L substrates was obtained during the reloading phase in comparison to control cells. This expanded amino acid pool reflected an increased activity of transport System A, an agency of amino acid mediation known to enlarge its capacity following a hyperosmolar treatment of chick embryo fibroblasts (see Tramacere et al., 1984). L-Methionine, a preferred substrate of both A and L systems, appeared to be involved in the coupling between the activity of amino acid transport Systems A and L in these cells.  相似文献   

13.
Enhanced amino acid transport is observed when quiescent cultures of chicken embryo fibroblasts are stimulated to proliferate by the addition of purified multiplication-stimulating activity (MSA). This increase in amino acid transport is an early event occuring prior to the onset of DNA synthesis in stimulated cells. Results indicate that the changes in transport activity, as measured by α-aminoisobutyric acid (AIB) uptake, are due to stimulation of only the Na+-dependent A transport system. There is little or no change in the activities of transport systems ASC, L, or Ly+ upon exposure to MSA. A kinetic analysis shows this increased activity is due to a change in Vmax while Km remains unaltered. Continuous exposure to the stimulus is required to maintain the increased level of transport activity and the presence of inhibitors of RNA and protein synthesis significantly inhibits the response. Results also indicate that a similar specific increase in the A transport system is initiated when RSV tsNY68 infected cells are shifted to the permissive temperature. It appears that the A system of mediation is emerging as a strategic regulatory site for cell function.  相似文献   

14.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

15.
16.
AIM:To test the growth-promoting activity of the polyamine spermidine bound to various polymeric compounds in supramolecular complexes.METHODS:A thiazolyl blue cell viability assay was used to determine the growth-promoting potency of spermidine-supramolecular complexes in a human skin fibroblast cell line exposed to spermidine and different spermidine-supramolecular complexes that were obtained by combining spermidine and polyanionic polymers or cyclodextrin.Reconstituted human vaginal epithelium was exposed to a specific spermidinesupramolecular complex,i.e.,spermidine-hyaluronan(HA)50,and cell proliferation was determined by Ki-67immunohistochemical detection.Transepithelial electrical resistance and histological analysis were also performed on reconstituted human vaginal epithelium to assess tissue integrity.RESULTS:The effect of spermidine and spermidinesupramolecular complexes was first tested in skin fi-broblasts.Spermidine displayed a reverse dose-related mode of activity with mmol/L growth inhibition,whereas 30%stimulation over basal levels was detected at mol/L and nmol/L levels.Novel spermidine-supramolecular complexes that formed between spermidine and polyanionic polymers,such as HA,alginate,and polymaleate,were then tested at variable spermidine concentrations and a fixed polymer level(0.1%w/v).Spermidine-supramolecular complexes stimulated the cell growth rate throughout the entire concentration range with maximal potency(up to 80%)at sub-mol/L levels.Similar results were obtained with spermidine-(-cyclodextrin),another type of spermidine-supramolecular complex.Moreover,the increased expression of Ki-67 in the reconstituted human vaginal epithelium exposed to spermidine-HA 50 showed that the mode of action behind the spermidine-supramolecular complexes was increased cell proliferation.Functional and morphological assessments of reconstituted human vaginal epithelium integrity did not show significant alterations after exposure to spermidine-HA,thus supporting its safety.CONCLUSION:Spermidine found in spermidine-supramolecular complexes displayed potentiated regenerative effects.Safety data on reconstituted human vaginal epithelium suggested that assessing spermidinesupramolecular complex efficacy in atrophic disorders is justified.  相似文献   

17.
Hyperthermic exposure (39-43 degrees C) for 1 or 2 hr impairs growth and Na+-dependent amino acid transport in both a radiosensitive human T (Molt-4) and a radioresistant B (RPMI 1788) lymphoid cell line. The heat damage to Na+-dependent amino acid transport in both cell lines is reversible under the conditions tested. Cell growth, as judged by increases in cell number, is decreased in both cell lines after hyperthermic treatment (43 degrees C, 1-hr exposure). This decrease in growth correlated with the damage to, and recovery of, the Na+-dependent amino acid transport system. However, the sensitivity to heat of both growth and Na+-dependent amino acid transport appears to differ in Molt-4 which is somewhat more sensitive to hyperthermia (T-cell line) vs RPMI-1788 (B-cell line). In the case of Molt-4, the rate of growth is decreased for about 60-80 hr after cells are exposed for 1 hr at 43 degrees C; whereas increases in cell number in the RPMI 1788 is observed within 40 hr after the heat treatment. The differences observed in cell growth and transport in these two lymphoid cell lines are attributed to the manner in which heat affects (i) the transport parameters in Molt-4 vs RPMI 1788 (i.e., the Michaelis-Menten constants Km and Vmax) and (ii) the putative plasma membrane sulfhydryl protein(s) which modulates Na+-dependent amino acid transport.  相似文献   

18.
The product of the UGA4 gene in Saccharomyces cerevisiae, which catalyzes the transport of 4-aminobutyric acid (GABA), also catalyzed the transport of putrescine. The Km values for GABA and putrescine were 0.11 and 0.69 mM, respectively. The UGA4 protein was located on the vacuolar membrane as determined by the effects of bafilomycin A1 and by indirect immunofluorescence microscopy. Uptake of both GABA and putrescine was inhibited by spermidine and spermine, although these polyamines are not substrates of UGA4. The UGA4 mRNA was induced by exposure to GABA, but not putrescine over 12h. The growth of an ornithine decarboxylase-deficient strain was enhanced by putrescine, and both putrescine and spermidine contents increased, when the cells were expressing UGA4. The results suggest that a substantial conversion of putrescine to spermidine occurs in the cytoplasm even though UGA4 transporter exists on vacuolar membranes.  相似文献   

19.
Little is known concerning the effects of Na+-coupled solute transport on (Na+,K+)-ATPase mediated cation pumping in the intact cell. We investigated the effect of amino acid transport and growth factor addition on the short term regulation of (Na+,K+)-ATPase cation transport in HeLa cells. The level of pump activity in the presence of amino acids or growth factors was compared to the level measured in phosphate buffered saline. These rates were further related to the maximal pump capacity, operationally defined as ouabain inhibitable 86Rb+ influx in the presence of 15 microM monensin. Of the growth factors tested, only insulin was found to moderately (22%) increase (Na+,K+)-ATPase cation transport. The major determinant of pump activity was found to be the transport of amino acids. Minimal essential medium (MEM) amino acids increased ouabain inhibitable 86Rb+ influx to a level close to that obtained with monensin, indicating that the (Na+,K+)-ATPase is operating near maximal capacity during amino acid transport. This situation may apply to tissue culture conditions and consequently measurements of (Na+,K+)-ATPase activity in buffer solutions alone may yield little information about cation pumping under culture conditions. This finding applies especially to cells having high rates of amino acid transport. Furthermore, rates of amino acid transport may be directly or indirectly involved in the long-term regulation of the number of (Na+,K+)-ATPase molecules in the plasma membrane.  相似文献   

20.
Phytomonas cells (Phytomonas Jma) isolated from the latex of Jatropha macrantha were assayed for amino acid, hexose and polyamine transport. Results showed high transport rates for glucose and fructose (193 and 128 pmol min(-1) 10(-7) cells, respectively) and lower, but significant rates, for proline, arginine, cysteine and glutamate (between 1.7 and 5.8 pmol min(-1) 10(-7) cells). Minor transport activities were observed for serine, glycine and aspartate (<1 pmol min(-1) 10(-7) cells). Amino acid transport processes do not seem to be regulated by starvation or during the growth phases. Polyamine transport was also evaluated showing a clear preference for spermidine over putrescine (3.4 and 0.4 pmol min(-1) 10(-7) cells, respectively). This work represents the first report on metabolite transport in phytomonads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号