首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cholesteryl ester transfer protein (CETP) of apparent Mr 74,000 has recently been purified from human plasma. Three monoclonal neutralizing antibodies to the CETP were obtained by immunizing mice with purified CETP. The antibodies, each recognizing a similar epitope on CETP, caused parallel and complete immunotitration of plasma cholesteryl ester and triglyceride transfer activities but only partial inhibition of phospholipid transfer activity. Monoclonal immunoaffinity chromatography of plasma or its fractions showed complete removal of cholesteryl ester and triglyceride transfer activities but incomplete removal of phospholipid transfer activity. Sodium dodecyl sulfate gel electrophoresis and immunoblotting of the immunoaffinity-retained fractions showed that only the Mr 74,000 protein was immunoreactive. The results suggest that the previously characterized CETP accounts for all of the cholesteryl ester and triglyceride transfer activity in human plasma but only part of the phospholipid transfer activity.  相似文献   

2.
The cholesteryl ester transfer protein (CETP; 476 amino acids) mediates the transfer of neutral lipids and phospholipids between plasma lipoproteins. Previous studies showed that the epitope of a neutralizing monoclonal antibody (TP2) was located within the C-terminal 26 amino acids (aa) of CETP. To determine possible involvement of this region in lipid transfer activities, we generated six deletion mutants between Arg-451 and Leu-475 by in vitro mutagenesis and expressed mutant proteins in mammalian cells. Only deletion mutants between aa Phe-463 and Leu-475 failed to bind TP2; these mutant proteins were well secreted by cells but showed markedly reduced cholesteryl ester transfer activity. One of the deletion mutants (delta 470-475) showed similar reductions in cholesteryl ester and triglyceride transfer activities but normal or increased phospholipid transfer activity. Limited proteolysis of this mutant protein indicated a similar overall folding pattern to the wild-type protein. Thus, aa between Phe-463 and Leu-475 are necessary for binding TP2. Deletions within this sequence selectively impair neutral lipid transfer activity, suggesting a direct involvement in neutral lipid transfer.  相似文献   

3.
The plasma cholesteryl ester transfer protein (CETP, Mr 74,000) has a binding site for neutral lipid which can readily equilibrate with lipoprotein cholesteryl esters or triglycerides. Recently, a monoclonal antibody (TP2) was obtained which neutralizes the cholesteryl ester (CE) and triglyceride (TG) transfer activities of the CETP. In this report, the epitope of the inhibitory monoclonal antibody has been localized to a hydrophobic 26-amino acid sequence at the COOH terminus of CETP. The Fab fragments of TP2 caused partial (50%) inhibition of CE transfer and complete inhibition of TG transfer by the CETP. Similarly, the Fab fragments inhibited (37%) the binding of CE to the CETP and abolished the binding of TG to the CETP. Surprisingly, the TP2 Fab was also found to enhance the binding of CETP to plasma lipoproteins and to phospholipid vesicles. In conclusion, the TP2 monoclonal antibody inhibits lipid transfer by blocking the uptake of lipid by CETP. The COOH-terminal epitope may be in or near the neutral lipid binding site. Occupancy of this site by TP2 Fab fragments or by neutral lipid may result in a conformational change of CETP causing enhanced binding to lipoproteins or vesicles.  相似文献   

4.
These studies were undertaken to examine the effects of lipoprotein lipase (LPL) and cholesteryl ester transfer protein (CETP) on the transfer of cholesteryl esters from high density lipoproteins (HDL) to very low density lipoproteins (VLDL). Human or rat VLDL was incubated with human HDL in the presence of either partially purified CETP, bovine milk LPL or CETP plus LPL. CETP stimulated both isotopic and mass transfer of cholesteryl esters from HDL into VLDL. LPL caused only slight stimulation of cholesteryl ester transfer. However, when CETP and LPL were both present, the transfer of cholesteryl esters from HDL into VLDL remnants was enhanced 2- to 8-fold, compared to the effects of CETP alone. The synergistic effects of CETP and LPL on cholesteryl ester transfer were more pronounced at higher VLDL/HDL ratios and increased with increasing amounts of CETP. In time course studies the stimulation of cholesteryl ester transfer activity occurred during active triglyceride hydrolysis. When lipolysis was inhibited by incubating LPL with either 1 M NaCl or 2 mM diethylparanitrophenyl phosphate, the synergism of CETP and LPL was reduced or abolished, and LPL alone did not stimulate cholesteryl ester transfer. These experiments show that LPL enhances the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. This property of LPL is related to lipolysis.  相似文献   

5.
Plasma cholesteryl ester transfer protein (CETP) facilitates the net transfer and exchange of cholesteryl ester (CE), triglyceride (TG), and phospholipids between lipoproteins. A series of monoclonal antibodies (mAbs) against human CETP was obtained, comprising mAbs either inhibiting or not inhibiting these transfer activities. One mAb (LT-J1) inhibited the transfer activity of TG almost completely, but not that of CE, indicating that CE and TG binding sites on the CETP molecule may be distinct from each other, and that this mAb may specifically recognize the TG binding site. A radioimmunoassay system for determining the level of CETP was also established using these mAbs, and the plasma CETP levels in 20 normolipemic Japanese adults were found to range from 2.1 to 2.7 mg/liter.  相似文献   

6.
Site-specific changes in the amino acid composition of human cholesteryl ester transfer protein (CETP) modify its preference for triglyceride (TG) versus cholesteryl ester (CE) as substrate. CETP homologs are found in many species but little is known about their activity. Here, we examined the lipid transfer properties of CETP species with 80–96% amino acid identity to human CETP. TG/CE transfer ratios for recombinant rabbit, monkey, and hamster CETPs were 1.40-, 1.44-, and 6.08-fold higher than human CETP, respectively. In transfer assays between VLDL and HDL, net transfers of CE into VLDL by human and monkey CETPs were offset by equimolar net transfers of TG toward HDL. For hamster CETP this process was not equimolar but resulted in a net flow of lipid (TG) into HDL. When assayed for the ability to transfer lipid to an acceptor particle lacking CE and TG, monkey and hamster CETPs were most effective, although all CETP species were able to promote this one-way movement of neutral lipid. We conclude that CETPs from human, monkey, rabbit, and hamster are not functionally equivalent. Most unique was hamster CETP, which strongly prefers TG as a substrate and promotes the net flow of lipid from VLDL to HDL.  相似文献   

7.
In an attempt to define an active domain of the protein, fragments of cholesteryl ester transfer protein (CETP) were obtained by limited digestion of the native, plasma-derived protein with trypsin, chymotrypsin, or Staphylococcus aureus V8 protease or by expression of CETP cDNA restriction fragments in Escherichia coli. Although digestion of native CETP with these proteases resulted in extensive fragmentation of the protein and loss of the intact 74-kDa molecule as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, CE transfer activity was unaffected (trypsin or chymotrypsin treatment) or only partially lost (V8 protease treatment). Analysis by molecular sieve chromatography showed that the CE transfer-active product of this proteolysis consisted of polypeptide fragments which remained associated, retaining the native molecular weight of CETP. These proteolyzed complexes were resistant to dissociation by dithiothreitol, 8 M urea, or delipidating agents. As shown by CE transfer activity, native CETP was found to possess a stable conformation which remained unchanged in buffers containing up to 4.5 M urea, or following exposure to even higher (8 M) urea concentrations. CETP polypeptides from bacterially expressed cDNA fragments were found to be catalytically inactive although they contained the epitope for an inhibitory anti-CETP monoclonal antibody and had emulsion binding properties similar to native CETP. Selected synthetic CETP peptides (including the peptide containing the inhibitory monoclonal antibody epitope) were also devoid of CE transfer activity. Thus, no evidence was found for an independently active subunit of the CETP. Together, the results indicate that the CETP possesses a distinct and highly stable tertiary structure which is required for CE transfer catalytic activity.  相似文献   

8.
Plasma cholesteryl ester transfer protein (CETP) activity is high in rabbits, intermediate in humans, and nondetectable in rodents. Human apolipoprotein CI (apoCI) was found to be a potent inhibitor of CETP. The aim of this study was to compare the ability of rabbit and human apoCI to modulate the interaction of CETP with HDLs and to evaluate to which extent apoCI contributes to plasma cholesteryl ester transfer rate in normolipidemic humans and rabbits. Rabbit apoCI gene was cloned and sequenced, rabbit and human apoCI were purified to homogeneity, and their ability to modify the surface charge properties and the CETP inhibitory potential of HDL were compared. It is demonstrated that unlike human apoCI, rabbit apoCI does not modulate cholesteryl ester transfer rate in total plasma. Whereas both human and rabbit apoCI readily associate with HDL, only human apoCI was found to modify the electrostatic charge of HDL. In humans, both CETP and apoCI at normal, physiological levels contribute significantly to the plasma cholesteryl ester transfer rate. In contrast, CETP is the sole major determinant of cholesteryl ester transfer in normolipidemic rabbit plasma as a result of the inability of rabbit apoCI to change HDL electronegativity.  相似文献   

9.
Cholesteryl ester transfer protein (CETP) plays an important role in plasma lipoprotein metabolism through its ability to transfer cholesteryl ester, triglyceride, and phospholipid between lipoproteins. CETP is a member of a gene family that also includes bactericidal/permeability-increasing protein (BPI). The crystal structure of BPI shows it to be composed of two domains that share a similar structural fold that includes an apolar ligand-binding pocket. As structurally important residues are conserved between BPI and CETP, it is thought that CETP and BPI may have a similar overall conformation. We have previously proposed a model of CETP structure based on the binding characteristics of anti-CETP monoclonal antibodies (mAbs). We now present a refined epitope map of CETP that has been adapted to a structural model of CETP that uses the atomic coordinates of BPI. Four epitopes composed of CETP residues 215-219, 219-223, 223-227, and 444-450, respectively, are predicted to be situated on the external surface of the central beta-sheet and a fifth epitope (residues 225-258) on an extended linker that connects the two domains of the molecule. Three other epitopes, residues 317-331, 360-366, and 393-410, would form part of the putative carboxy-terminal beta-barrel. The ability of the corresponding mAbs to compete for binding to CETP is consistent with the proximity of the respective epitopes in the model. These results thus provide experimental evidence that is consistent with CETP and BPI having similar surface topologies.  相似文献   

10.
Cholesteryl ester transfer protein (CETP) has at least one unpaired sulfhydryl residue, which we have shown previously to be in or near the active site region. We investigated the location of this unpaired cysteine residue(s) of CETP using chemical modification with fluorescent sulfhydryl-specific reagents, limited proteolysis, and amino acid/sequence analysis. The kinetics of labeling CETP by either 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS) or acrylodan were followed by observing the increase in fluorescence of the bound probes. Labeling was inhibited strongly by preincubation of the CETP with either PNU-617, a competitive inhibitor of cholesteryl ester (CE) transport, and TP2 antibody. In addition, the transfer activities of the substrate CE by the modified CETP's were also inhibited but not competitively. Finally, preincubation of the native protein with N-ethylmaleimide (NEM) resulted in inhibition of activity that was dependent upon the time of exposure of the protein to the alkylating agent. These results provide further evidence that there is a cysteine residue in the active site region of CETP and ligands that either react or bind to this residue produce steric hindrance to CE transfer activity. Finally, although not conclusive, results of the protein chemistry experiments with the modified CETP suggest that the cysteine residue at position 333 is unpaired.  相似文献   

11.
The plasma cholesteryl ester-transfer protein (CETP, Mr 74,000) promotes exchange of both neutral lipids and phospholipids (phosphatidylcholine, PC) between lipoproteins. To investigate the mechanism of facilitated lipid transfer, CETP was incubated with unilamellar egg PC vesicles containing small amounts of cholesteryl ester (CE) or triglyceride, and then analyzed by gel filtration chromatography. There was rapid transfer of radiolabeled CE or triglyceride and PC from vesicles to CETP. The CETP with bound lipids was isolated and incubated with low density lipoproteins (LDL), resulting in transfer of the lipids to LDL. The CETP bound up to 0.9 mol of CE or 0.2 mol of triglyceride and 11 mol of PC/mol of CETP. para-Chloromercuriphenylsulfonate, an inhibitor of CE and triglyceride transfer, was found to decrease the binding of radiolabeled CE and triglyceride by CETP. Under various conditions the CETP eluted either as an apparent monomer with bound lipid (Mr 75,000-93,000), or in complexes with vesicles. The distribution of CETP between these two states was influenced by the presence of apoA-I or albumin, incubation time, vesicle/CETP ratio, and buffer pH and ionic strength. The results indicate that the CETP has binding sites for CE, triglyceride, and PC which readily equilibrate with lipoprotein lipids and suggest that CETP can act as a carrier of lipid between lipoproteins.  相似文献   

12.
The net transfer of core lipids between lipoproteins is facilitated by cholesteryl ester transfer protein (CETP). We have recently documented CETP deficiency in a family with hyperalphalipoproteinemia, due to a CETP gene splicing defect. The purpose of the present study was to characterize the plasma lipoproteins within the low density lipoprotein (LDL) density range and also the cholesteryl ester fatty acid distribution amongst lipoproteins in CETP-deficient subjects. In CETP deficiency, the conventional LDL density range contained both an apoE-rich enlarged high density lipoprotein (HDL) (resembling HDLc), and also apoB-containing lipoproteins. Native gradient gel electrophoresis revealed clear speciation of LDL subclasses, including a distinct population larger in size than normal LDL. Anti-apoB affinity-purified LDL from the CETP-deficient subjects were shown to contain an elevated triglyceride to cholesteryl ester ratio, and also a high ratio of cholesteryl oleate to cholesteryl linoleate, compared to their own HDL or to LDL from normal subjects. Addition of purified CETP to CETP-deficient plasma results in equilibration of very low density lipoprotein (VLDL) cholesteryl esters with those of HDL. These data suggest that, in CETP-deficient humans, the cholesteryl esters of VLDL and its catabolic product, LDL, originate predominantly from intracellular acyl-CoA:cholesterol acyltransferase (ACAT). The CETP plays a role in the normal formation of LDL, removing triglyceride and transferring LCAT-derived cholesteryl esters into LDL precursors.  相似文献   

13.
Cholesteryl ester transfer protein may play a role in the cholesteryl ester metabolism between high density lipoproteins (HDL) and apolipoprotein B-containing lipoproteins. To investigate relationship between HDL and cholesteryl ester transfer protein (CETP) activity in the development of atherosclerosis, the present study has focused on CETP activity in the patients with familial hypercholesterolemia (GH). HDL-C and HDL-C/apo A-I mass ratio in heterozygous FH were lower than those in normolipidemic controls. There was a 2-fold increase in total CETP activity in incubated FH serum compared with normolipidemic controls. Assays for CETP activity in the lipoprotein deficient serum (d greater than 1.215 g/ml) were carried out by measuring the transfer of radioactive cholesteryl ester from HDL (1.125 less than d less than 1.21 g/ml) to LDL (1.019 less than d less than 1.060 g/ml). CETP activities in heterozygous FH (79 +/- 4 nmol/ml/h) was significantly higher than those in normolipidemic controls (54 +/- 6 nmol/ml/h). The increased total cholesteryl ester transfer mainly results from increased CETP activity in the d greater than 1.215 g/ml, possibly reflecting an increase in CETP mass in serum. Increased CETP activity in the d greater than 1.215 g/ml was correlated positively with IDL-cholesterol/triglyceride mass ratio (r = 0.496, p less than 0.01), and negatively with HDL-cholesterol/apo A-I mass ratio (r = -0.334, p less than 0.05). These results indicate that the enhanced CETP activities may contribute to increase risk for developing atherosclerosis in FH by changing the distribution of cholesteryl ester in serum lipoproteins.  相似文献   

14.
Transgenic mice expressing human cholesteryl ester transfer protein (HuCETPTg mice) were crossed with apolipoprotein CI-knocked out (apoCI-KO) mice. Although total cholesterol levels tended to be reduced as the result of CETP expression in HuCETPTg heterozygotes compared with C57BL6 control mice (-13%, not significant), a more pronounced decrease (-28%, p < 0.05) was observed when human CETP was expressed in an apoCI-deficient background (HuCETPTg/apoCI-KO mice). Gel permeation chromatography analysis revealed a significant, 6.1-fold rise (p < 0.05) in the cholesteryl ester content of very low density lipoproteins in HuCETPTg/apoCI-KO mice compared with control mice, whereas the 2.7-fold increase in HuCETPTg mice did not reach the significance level in these experiments. Approximately 50% decreases in the cholesteryl ester content and cholesteryl ester to triglyceride ratio of high density lipoproteins (HDL) were observed in HuCETPTg/apoCI-KO mice compared with controls (p < 0.05 in both cases), with intermediate -20% changes in HuCETPTg mice. The cholesteryl ester depletion of HDL was accompanied with a significant reduction in their mean apparent diameter (8.68 +/- 0.04 nm in HuCETPTg/apoCI-KO mice versus 8.83 +/- 0.02 nm in control mice; p < 0.05), again with intermediate values in HuCETPTg mice (8.77 +/- 0.04 nm). In vitro purified apoCI was able to inhibit cholesteryl ester exchange when added to either total plasma or reconstituted HDL-free mixtures, and coincidently, the specific activity of CETP was significantly increased in the apoCI-deficient state (173 +/- 75 pmol/microg/h in HuCETPTg/apoCI-KO mice versus 72 +/- 19 pmol/microg/h in HuCETPTg, p < 0.05). Finally, HDL from apoCI-KO mice were shown to interact more readily with purified CETP than control HDL that differ only by their apoCI content. Overall, the present observations provide direct support for a potent specific inhibition of CETP by plasma apoCI in vivo.  相似文献   

15.
Recombinant high density lipoprotein (rHDL) particles were prepared by cosonication of purified lipids and human apoproteins and incubated with partly purified cholesteryl ester transfer protein (CETP) and low density lipoprotein (LDL) containing [3H]cholesteryl ester. Increasing the triglyceride content relative to cholesteryl ester in rHDL significantly decreased the ability of the particles to accept cholesteryl esters transferred by CETP. Kinetic analysis of the data was performed to numerically define the maximum velocity of lipid transfer, Tmax, and the HDL concentration required for half maximal velocity, KH. Increases in rHDL-triglyceride content were shown to result in a significant reduction in the Tmax without a major change in KH. When the free cholesterol content was increased relative to phospholipid, the ability of the particles to accept cholesteryl esters was also decreased in a similar manner. Conversely, rHDL prepared from purified apoprotein A-I, A-II, or mixtures of both, had significantly elevated Tmax and KH values for their interaction with CETP. The results suggest that increases in triglyceride or free cholesterol content of an rHDL particle decrease the catalytic ability of CETP by noncompetitive inhibition. In addition, some component(s) of HDL apoproteins, other than A-I or A-II, were shown to uncompetitively inhibit the activity of CETP, by modifying both Tmax and the KH for the reaction. This study has shown that altered HDL composition may have marked effects on the transfer and equilibration of cholesteryl esters within the HDL pool.  相似文献   

16.
Lipoprotein lipase enhances the cholesteryl ester transfer protein (CETP)-mediated transfer of cholesteryl esters from plasma high density lipoproteins (HDL) to very low density lipoproteins (VLDL). In time course studies the stimulation of cholesteryl ester transfer by bovine milk lipase was correlated with accumulation of fatty acids in VLDL remnants. As the amount of fatty acid-poor albumin in the incubations was increased, there was decreased accumulation of fatty acids in VLDL remnants and a parallel decrease in the stimulation of cholesteryl ester transfer by lipolysis. Addition of sodium oleate to VLDL and albumin resulted in stimulation of the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. The stimulation of transfer of cholesteryl esters into previously lipolyzed VLDL was abolished by lowering the pH from 7.5 to 6.0, consistent with a role of lipoprotein ionized fatty acids. CETP-mediated cholesteryl ester transfer from HDL to VLDL was also augmented by phosholipase A2 and by a bacterial lipase which lacked phospholipase activity. When VLDL and HDL were re-isolated after a lipolysis experiment, both lipoproteins stimulated CETP activity. Postlipolysis VLDL and HDL bound much more CETP than native VLDL or HDL. Lipolysis of apoprotein-free phospholipid/triglyceride emulsions also resulted in enhanced binding of CETP to the emulsion particles. Incubation conditions which abolished the enhanced cholesteryl ester transfer into VLDL remnants reduced binding of CETP to remnants, emulsions, and HDL. In conclusion, the enhanced CETP-mediated transfer of cholesteryl esters from HDL to VLDL during lipolysis is related to the accumulation of products of lipolysis, especially fatty acids, in the lipoproteins. Lipids accumulating in VLDL remnants and HDL as a result of lipolysis may augment binding of CETP to these lipoproteins, leading to more efficient transfer of cholesteryl esters from HDL to VLDL.  相似文献   

17.
S Wang  L P Deng  M L Brown  L B Agellon  A R Tall 《Biochemistry》1991,30(14):3484-3490
Human plasma cholesteryl ester transfer protein (CETP) enhances transfer and exchange of cholesteryl ester (CE) and triglyceride (TG) between high-density lipoprotein and other lipoproteins. To define regions responsible for the neutral lipid transfer activities at the molecular level, a total of 27 linker insertion mutants at 18 different sites along the CETP molecule were prepared and transiently expressed in a mammalian cell line (COS). The inserted linkers were small (usually 6 bp) and did not interrupt the translational reading frame of the CETP cDNA. Although secretion of each mutant protein was less than that of wild-type CETP, the majority of the mutants had normal cholesteryl ester transfer activity (transfer activity per nanogram of CETP in media). However, insertional alterations in three regions severely impaired CE transfer activity: (1) in the region of amino acids 48-53; (2) at amino acid 165; and (3) in the region of amino acids 373-379. Although the impaired activities could also be a result of globally incorrect folding of these CETP mutants, hydrophobicity analysis and secondary structure predictions tended to exclude this possibility for most of the insertion sites at which insertions resulted in inactivation. The insertion at amino acid 379 occurs immediately after a triplet of lysine residues, suggesting that this region might be involved in an essential step in the mechanism of CE and TG transfer, such as the binding of CETP to phosphatidylcholine molecules in the lipoprotein surface. Effects on TG transfer activity were generally similar to those on CE transfer activity, suggesting a similar structural requirement for both neutral lipid transfer activities.  相似文献   

18.
Two lipid transfer proteins, designated lipid transfer protein-I (Mr 69 000) and lipid transfer protein-II (Mr 55 000), each of which facilitates the transfer of radiolabelled cholesteryl ester, triacylglycerol and phosphatidylcholine between plasma lipoproteins, were purified from human plasma. Immunoglobulin G was prepared from goat antiserum to human lipid transfer protein-I (i.e., anti-human LTP-I IgG). The progressive addition of anti-human LTP-I IgG to buffered solutions containing either a highly purified mixture of human lipid transfer protein-I and lipid transfer protein-II, or highly purified rabbit lipid transfer protein (Abbey, M., Calvert, G.D. and Barter, P.J. (1984) Biochim. Biophys. Acta 793, 471-480) resulted in specific immunoprecipitation and the removal of increasing amounts, up to 100%, of cholesteryl ester, triacylglycerol and phosphatidylcholine transfer activities. However, similar precipitation studies on human and rabbit lipoprotein-free plasma resulted in the progressive removal of all cholesteryl ester and triacylglycerol transfer activities but only 30% (human) or 20% (rabbit) of phosphatidylcholine transfer activity. In all cases more anti-human LTP-I IgG was required to precipitate rabbit lipid transfer activity than human lipid transfer activity. These results suggest that lipid transfer protein-I and lipid transfer protein-II have antigenic sites in common, allowing precipitation of both proteins by specific antibody to lipid transfer protein-I. Most plasma phosphatidylcholine transfer activity is mediated by a protein (or proteins) other than lipid transfer protein-I and lipid transfer protein-II. In lipoprotein-free plasma all cholesteryl ester and triacylglycerol transfer activity, and some phosphatidylcholine transfer activity, is mediated by lipid transfer protein-I (or lipid transfer protein-I and an antigenically similar protein, lipid transfer protein-II.  相似文献   

19.
Purified human cholesteryl ester transfer protein (CETP) has been found, under certain conditions, to promote changes to the particle size distribution of high-density lipoproteins (HDL) which are comparable to those attributed to a putative HDL conversion factor. When preparations of either the conversion factor or CETP are incubated with HDL3 in the presence of very-low-density lipoproteins (VLDL) or low-density lipoproteins (LDL), the HDL3 are converted to very small particles. The possibility that the conversion factor may be identical to CETP was supported by two observations: (1) CETP was found to be the main protein constituent of preparations of the conversion factor and (2) an antibody to CETP not only abolished the cholesteryl ester transfer activity of the conversion factor preparations but also inhibited changes to HDL particle size. In additional studies, the changes to HDL particle size promoted by purified CETP were inhibited by the presence of fatty-acid-free bovine serum albumin; by contrast, albumin had no effect on the cholesteryl ester transfer activity of the CETP. The possibility that albumin may inhibit changes to HDL particle size by removing unesterified fatty acids from either the lipoproteins or CETP was tested by adding exogenous unesterified fatty acids to the incubations. In incubations of HDL with either VLDL or LDL, sodium oleate had no effect on HDL particle size. However, when CETP was also present in the incubation mixtures the capacity of CETP to reduce the particle size of HDL was greatly enhanced by the addition of sodium oleate. It is concluded that the changes in HDL particle size which were previously attributed to an HDL conversion factor can be explained in terms of the interacting effects of CETP and unesterified fatty acids.  相似文献   

20.
动脉粥样硬化是引起心血管疾病的病理学基础,临床上已有多种药物治疗的方法。基因治疗与疫苗治疗是最新发展的治疗方法,目前相关研究十分活跃,CETi-1疫苗是美国Avant公司研究开发的抗动脉粥样硬化的肽疫苗,由破伤风毒素的Th细胞表位14个氨基酸连接人胆固醇酯转移蛋白B细胞表位的16个氨基酸,并在N端加1个半胱氨酸构建而成。它注入人体后可以引起人体免疫反应,产生能结合CETP的抗体,抑制高密度脂蛋白向低密度脂蛋白的转化,因而具有抗动脉粥样硬化的生物学效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号