首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Baddam S  Bowler BE 《Biochemistry》2005,44(45):14956-14968
The alkaline transition kinetics of a Lys 73-->His (H73) variant of iso-1-cytochrome c are triggered by three ionizable groups [Martinez, R. E., and Bowler, B. E. (2004) J. Am. Chem. Soc. 126, 6751-6758]. To eliminate ambiguities caused by overlapping phases due to formation of the Lys 79 alkaline conformer and proline isomerization associated with the His 73 alkaline conformer, we mutated Lys 79 to Ala in the H73 variant (A79H73). The stability and guanidineHCl m-values of the A79H73 and H73 variants at pH 7.5 are the same. The Ala 79 mutation causes formation of the alkaline conformer to depend on [NaCl]. The salt dependence saturates at 500 mM NaCl, and the thermodynamics of alkaline state formation for the A79H73 and H73 variants become identical. The salt dependence is consistent with loss of an electrostatic contact between Lys 79 and heme propionate D in the A79H73 variant. The kinetics of alkaline state formation for the A79H73 variant support the three trigger group model developed for the H73 variant, with the primary trigger, pK(HL), being ionization of His 73. The low pH ionization, pK(H1), is perturbed by the Ala 79 mutation indicating that this ionization is modulated by the buried hydrogen bond network involving heme propionate D. The A79H73 variant has a high spin heme above pH 9 suggesting that the high pH ionization, pK(H2), involves a high spin heme conformer. The proline isomerization phase is modulated by both pK(HL) and pK(H2) indicating that it is sensitive to protein conformation.  相似文献   

2.
The reaction of cytochrome c with trifluoromethylphenyl isocyanate was carried out under conditions which led to the modification of a small number of the 19 lysines. Extensive ion-exchange chromatography was used to separate and purify six different derivatives, each modified at a single lysine residue, lysines 8, 13, 27, 72, 79, and 100, respectively. The only modifications which affected the activity of cytochrome c with cytochrome oxidase (EC 1.9.3.1) were those of lysines immediately surrounding the heme crevice, lysines 13, 27, 72, and 79, and also lysine 8 at the top of the heme crevice. In each case, the modified cytochrome c had the same maximum velocity as that of native cytochrome c, but an increased Michaelis constant for high affinity phase of the reaction. This supports the hypothesis that the cytochrome oxidase reaction site is located in the heme crevice region, and the highly conserved lysine residues surrounding the heme crevice are important in the binding.  相似文献   

3.
1. The stability of the native conformation of the heme crevice of pyridoxal phosphate (PLP)-ferricytochromes c as assayed by the pK, for 695 nm absorption band varies considerably. The pKa values are 8.76 for cytochrome c modified by PLP at lysine 79[PLP(Lys 79)-cyt. c], 9.23 for cytochrome c modified by PLP at lysine 86 [PLP(Lys 86)-cyt.c], 9.34 for doubly PLP substituted cytochrome c at lysines 79 and 86 [(PLP)2-cyt. c], 9.50 for triply substituted cytochrome c [(PLP)3-cyt. c] and 9.06 for native cytochrome c, which indicates less stable heme crevice of PLP-cytochrome c. 2. The singly PLP-modified cytochrome c indicate decreased activities with mitochondrial cytochrome c oxidase in the following order: PLP(Lys 86)-cyt. c less than PLP(Lys 79)-cyt. c less than native cytochrome c. The high affinity Km for PLP(Lys 86)-cyt. c, PLP(Lys 79)-cyt. c and native cytochrome c are 0.28 microM, 0.16 microM and 0.02 microM respectively. 3. PLP-cytochromes c show decreased binding affinities to fluorescence probes 12-(9-antroyl)-stearic acid and pyrene-labelled mitoplasts. The quenching of singly PLP-modified cytochrome c depends significantly on the ionic strength.  相似文献   

4.
Oxidized cytochrome c is known to undergo a restricted conformational refolding of its haem area at around pH 9. Methionine 80, the sixth ligand of the ferric haem iron in the biologically active neutral conformational state, is replaced by a new strong-field ligand in the biologically inactive alkaline state of the molecule. It had been proposed that a lysine residue, possibly lysine 79. is the new haem ligand.We have tested this proposition by a more direct approach than hitherto employed, namely by measuring the relative chemical reactivity of lysines in the oxidized eytochrome c and in fragment 66–80 cut out of the native molecule. The relative rates of acetylation of lysine 79, measured between pH 7 and pH 11, are virtually identical in the intact molecule and in the haem-free fragment 66–80. Similarly, the rates are also the same for the amidination reaction with isethionylacetimidate. When the relative rates of acetylation and amidination of lysines 72 + 73 were compared there was again no significant difference between the intact molecule and fragment 66–80. These results contradict the involvement of any of the three lysines in the alkaline isomerization, as a haem-bound ?-amino group would be much less reactive than its freely accessible counterpart in fragment 66–80.To corroborate the above finding, the pK value and absolute rate constant of acetylation of lysine 79 were determined and compared with the respective values for lysines 39 and 60. The latter two residues are on the side opposite to the haem pocket and hence unable to bind to the haem iron.The three pK values and rate constants k obey the Brønsted relationship: log κ = α + βpK with β = 0.48, a value characteristic of the acetylation of freely accessible primary amino groups.Taken together, these results oppose an ?-amino: haem iron co-ordination in the alkaline state of oxidized eytochrome c.  相似文献   

5.
Cytochrome c, a mitochondrial electron transfer protein containing a hexacoordinated heme, is involved in other physiologically relevant events, such as the triggering of apoptosis, and the activation of a peroxidatic activity. The latter occurs secondary to interactions with cardiolipin and/or post-translational modifications, including tyrosine nitration by peroxynitrite and other nitric oxide-derived oxidants. The gain of peroxidatic activity in nitrated cytochrome c has been related to a heme site transition in the physiological pH region, which normally occurs at alkaline pH in the native protein. Herein, we report a spectroscopic characterization of two nitrated variants of horse heart cytochrome c by using optical spectroscopy studies and NMR. Highly pure nitrated cytochrome c species modified at solvent-exposed Tyr-74 or Tyr-97 were generated after treatment with a flux of peroxynitrite, separated, purified by preparative high pressure liquid chromatography, and characterized by mass spectrometry-based peptide mapping. It is shown that nitration of Tyr-74 elicits an early alkaline transition with a pKa = 7.2, resulting in the displacement of the sixth and axial iron ligand Met-80 and replacement by a weaker Lys ligand to yield an alternative low spin conformation. Based on the study of site-specific Tyr to Phe mutants in the four conserved Tyr residues, we also show that this transition is not due to deprotonation of nitro-Tyr-74, but instead we propose a destabilizing steric effect of the nitro group in the mobile Omega-loop of cytochrome c, which is transmitted to the iron center via the nearby Tyr-67. The key role of Tyr-67 in promoting the transition through interactions with Met-80 was further substantiated in the Y67F mutant. These results therefore provide new insights into how a remote post-translational modification in cytochrome c such as tyrosine nitration triggers profound structural changes in the heme ligation and microenvironment and impacts in protein function.  相似文献   

6.
Bandi S  Baddam S  Bowler BE 《Biochemistry》2007,46(37):10643-10654
To probe the mechanism of the alkaline conformational transition and its effect on the dynamics of gated electron transfer (ET) reactions, a Lys 79 --> His (K79H) variant of iso-1-cytochrome c has been prepared. Guanidine hydrochloride denaturation monitored by circular dichroism and absorbance at 695 nm indicates that this variant unfolds from a partially unfolded state. The conformation of the wild type (WT) and K79H proteins was monitored at 695 nm from pH 2 to 11. These data indicate that acid unfolding is multi-state for both K79H and WT proteins and that the His 79-heme alkaline conformer is more stable than a previously reported His 73-heme alkaline conformer. Fast and slow phases are observed in the kinetics of the alkaline transition of the K79H variant. The pH dependence of the fast phase kinetic data shows that ionizable groups with pKa values near 6.8 and 9 modulate the formation of the His 79-heme alkaline conformer. The slow phase kinetic data are consistent with a single ionizable group with a pKa near 9.5 promoting the Lys 73-heme alkaline transition. In the broader context of data on the alkaline transition, ionization of the ligand replacing Met 80 appears to play a primary role in promoting the formation of the alkaline conformer, with other ionizable groups acting as secondary modulators. Intermolecular ET with hexaammineruthenium(II) chloride shows conformational gating due to both His 79-heme and Lys 73-heme alkaline conformers. Both the position and the nature of the alkaline state ligand modulate the dynamics of ET gating.  相似文献   

7.
The reduction of cytochrome c by beef liver sulfite oxidase was found to be strongly inhibited by high ionic strength, indicating the importance of electrostatic interactions to the reaction. The reaction rates of sulfite oxidase with singly trifluoroacetylated or trifluoromethylphenylcarbamylated cytochrome c derivatives were studied to determine the role of individual lysines in the reaction. The reaction rate was decreased by modification of the lysines immediately surrounding the heme crevice, the decreases following the order: Lys 13 greater than Lys 25 congruent to Lys 79 approximately equal to Lys 87 greater than Lys 8 approximately equal to Lys 27 approximately equal to Lys 72. Modification of lysines 22, 55, 88, 99, and 100 had no effect on the reaction rate. These results indicate that the interaction site on cytochrome c for sulfite oxidase is at the heme crevice region, and overlaps considerable with that for cytochrome oxidase.  相似文献   

8.
The reduction of cytochrome c by beef liver sulfite oxidase was found to be strongly inhibited by high ionic strength, indicating the importance of electrostatic interactions to the reaction. The reaction rates of sulfite oxidase with singly trifluoroacetylated or trifluoromethylphenylcarbamylated cytochrome c derivatives were studied to determine the role of individual lysines in the reaction. The reaction rate was decreased by modification of the lysines immediately surrounding the heme crevice, the decreases following the order: Lys 13 > Lys 25 Lys 79 ≈ Lys 87 > Lys 8 ≈ Lys 27 ≈ Lys 72. Modification of lysines 22, 55, 88, 99, and 100 had no effect on the reaction rate. These results indicate that the interaction site on cytochrome c for sulfite oxidase is at the heme crevice region, and overlaps considerable with that for cytochrome oxidase.  相似文献   

9.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

10.
Electrostatic binding of at least two anionic iron hexacyanides to cationic horse heart cytochrome c was demonstrated by equilibrium dialysis measurements. No binding was detected following trifluoroacetylation of all of the 19 lysine residues. Replacement of the natural heme iron ligand methionine 80 by the alternative intrinsic ligand lysine 79 but not the extrinsic ligand imidazole resulted in the loss of one hexacyanide binding site. It is proposed that this site is located at the exposed heme edge and is functional in electron exchange.  相似文献   

11.
The preparation, purification, and characterization of four new derivatives of cytochrome c trifluoroacetylated at lysines 72, 79, 87, and 88 are reported. The redox reaction rates of these derivatives with cytochrome b5, cytochrome c1 and cytochrome oxidase indicated that the interaction domain on cytochrome c for all three proteins involves the lysines immediately surrounding the heme crevice. Modification of lysines 72, 79, 87 had a large effect on the rate of all three reactions, while modification of lysine 88 had a very small effect. Even though lysines 87 and 88 are adjacent to one another, lysine 87 is at the top left of the heme crevice oriented towards the front of cytochrome c, while lysine 88 is oriented more towards the back. Since the interaction sites for cytochrome c1 and cytochrome oxidase are essentially identical, cytochrome c probably undergoes some type of rotational diffusion during electron transport.  相似文献   

12.
The preparation, purification, and characterization of four new derivatives of cytochrome c trifluoroacetylated at lysines 72, 79, 87, and 88 are reported. The redox reaction rates of these derivatives with cytochrome b5, cytochrome c1 and cytochrome oxidase indicated that the interaction domain on cytochrome c for all three proteins involves the lysines immediately surrounding the heme crevice. Modification of lysines 72, 79, and 87 had a large effect on the rate of all three reactions, while modification of lysine 88 had a very small effect. Even though lysines 87 and 88 are adjacent to one another, lysine 87 is at the top left of the heme crevice oriented towards the front of cytochrome c, while lysine 88 is oriented more towards the back. Since the interaction sites for cytochrome c1 and cytochrome oxidase are essentially identical, cytochrome c probably undergoes some type of rotational diffusion during electron transport.  相似文献   

13.
Beta-Lactamases are responsible for bacterial resistance to beta-lactams and are thus of major clinical importance. However, the identity of the general base involved in their mechanism of action is still unclear. Two candidate residues, Glu166 and Lys73, have been proposed to fulfill this role. Previous studies support the proposal that Glu166 acts during the deacylation, but there is no consensus on the possible role of this residue in the acylation step. Recent experimental data and theoretical considerations indicate that Lys73 is protonated in the free beta-lactamases, showing that this residue is unlikely to act as a proton abstractor. On the other hand, it has been proposed that the pKa of Lys73 would be dramatically reduced upon substrate binding and would thus be able to act as a base. To check this hypothesis, we performed continuum electrostatic calculations for five wild-type and three beta-lactamase mutants to estimate the pKa of Lys73 in the presence of substrates, both in the Henri-Michaelis complex and in the tetrahedral intermediate. In all cases, the pKa of Lys73 was computed to be above 10, showing that it is unlikely to act as a proton abstractor, even when a beta-lactam substrate is bound in the enzyme active site. The pKa of Lys234 is also raised in the tetrahedral intermediate, thus confirming a probable role of this residue in the stabilization of the tetrahedral intermediate. The influence of the beta-lactam carboxylate on the pKa values of the active-site lysines is also discussed.  相似文献   

14.
In general, mutation of the phylogenetically conserved residue Phe82 in yeast iso-1-cytochrome c destabilizes the native conformation of the protein by facilitating the ligand exchange reactions that are associated with the alkaline conformational transitions of the ferricytochrome. Of the Phe82 variants surveyed thus far, Phe82Trp is unique in that it adopts a thermodynamically stable, high-spin conformation at mildly alkaline pH. This species exhibits spectroscopic features that can only be detected transiently in other ferricytochromes c within the first 100 ms immediately after a pH-jump from neutrality to pH >10. Spectroscopic characterization of this high-spin reaction intermediate suggests that in addition to an obligatory pentacoordinate heme iron, a group within the heme pocket coordinates the heme iron but is then replaced either by Met80, to revert to the native conformation, or by Lys73 or Lys79, to yield one of the conventional alkaline conformers. Evidence is presented to suggest that this group is either a hydroxide ion or Tyr67 rather than a loosely bound Met80.  相似文献   

15.
To explore electrostatic interactions in ubiquitin, pK(a) values have been determined by NMR for all 12 carboxyl groups in wild-type ubiquitin and in variants where single lysines have been replaced by neutral residues. Aspartate pK(a) values in ubiquitin range from 3.1 to 3.8 and are generally less than model compound values. Most aspartate pK(a) values are within 0.2 pH unit of those predicted with a simple Tanford-Kirkwood model. Glutamate pK(a) values range from 3.8 to 4.5, close to model compound values and differing by 0.1-0.8 pH unit from calculated values. To determine the role of positive charges in modulating carboxyl pK(a) values, we mutated lysines at positions 11, 29, and 33 to glutamine and threonine. NMR studies with these six single-site mutants reveal significant interactions of Lys 11 and Lys 29 with Glu 34 and Asp 21, respectively: pK(a) values for Glu 34 and Asp 21 increase by approximately 0.5-0.8 pH unit, similar to predicted values, when the lysines are replaced by neutral residues. In contrast, the predicted interaction between Lys 33 and Glu 34 is not observed experimentally. In some instances, substitution of lysine by glutamine and threonine did not lead to the same changes in carboxyl pK(a) values. These may reflect new short-range interactions between the mutated residues and the carboxyl groups. Carboxyl pK(a) shifts > 0.5 pH unit result from mutations at groups that are <5 A from the carboxyl group. No interactions are observed at >10 A.  相似文献   

16.
The site of the reaction between horse heart ferrocytochrome c and ferricyanide was investigated by measuring the reaction rate of cytochrome c derivatives specifically modified at single lysine residues to form trifluoroacetyl or trifluoromethylphenylcarbamyl amino groups. Cytochrome c derivatives singly modified at lysines 8, 13, 25, 27, 72, 79, and 87 surrounding the heme crevice had rate constants decreased from that of native cytochrome c by factors of 1.29, 2.03, 1.12, 1.35, 1.46, 1.29, and 1.19, respectively. Modification of a given lysine with the bulky trifluoromethylphenylcarbamyl group caused nearly the same decrease in reaction rate as modification with the trifluoroacetyl group, indicating that the effect was due to removal of an electrostatic interaction between the protonated lysine amino group and ferricyanide. Modification of lysines 22, 55, 99, and 100 at the right side, bottom, and back of cytochrome c had no effect on the reaction rate. These results indicate that the reaction site is located at the exposed edge of the heme and that the electrostatic interaction between ferricyanide and cytochrome c is dominated by the lysine amino groups surrounding the heme crevice, which include lysine 86, in addition to the ones listed above. We have used the specific lysine modification results to estimate the contribution of each lysine amino group to the electrostatic interaction and have developed a semiempirical relation for the total electrostatic interaction.  相似文献   

17.
18.
Nelson CJ  Bowler BE 《Biochemistry》2000,39(44):13584-13594
The alkaline conformational transition of a lysine 73 --> histidine variant of iso-1-cytochrome c has been studied. The transition has been monitored at 695 nm, a band sensitive to the presence of the heme-methionine 80 bond, at the heme Soret band which is sensitive to the nature of the heme ligand, and by NMR methods. The guanidine hydrochloride dependence of the alkaline conformational transition has also been monitored. The histidine 73 protein has an unusual biphasic alkaline conformational transition at both 695 nm and the heme Soret band, consistent with a three-state process. The conformational transition is fully reversible. An equilibrium model has been developed to account for this behavior. With this model, it has been possible to obtain the acid constant for the trigger group, pK(H), of the low-pH phase from the equilibrium data. A pK(H) value of 6.6 +/- 0.1 in H(2)O was obtained, consistent with a histidine acting as the trigger group. The NMR data for the low-pH phase of the alkaline conformational transition are consistent with an imidazole ligand replacing Met 80. For the high-pH phase of the biphasic alkaline transition, the NMR data are consistent with lysine 79 being the heme ligand. Guanidine hydrochloride m values of 1.67 +/- 0.08 and 1.1 +/- 0.2 kcal mol(-1) M(-1) were obtained for the low- and high-pH phases of the biphasic alkaline transition of the histidine 73 protein, respectively, consistent with a greater structural disruption for the low-pH phase of the transition.  相似文献   

19.
Absorption UV-VIS and pre-resonance Raman spectra of acidic cyt c solutions with a series of thiols added (thiophenol, n-propanethiol, isopropanethiol, L-cysteine, dithiothreitol, 2-mercaptoethanol, N-acetyl-L-cysteine, p-acetamidothiophenol, 2-mercaptoethanamine, thioglycolic acid and mercaptopropionic acid), are presented. Interactions of cyt c molecule with the thiols were studied with the aim to identify binding of the thiols with the cyt c heme as its iron axial ligands. Absorption and Raman spectra showed some correlation between maxima of 700 nm region absorption band (typical for Fe-S axial bond in cyt c heme) and also wave numbers of spin state marker and axial ligand sensitive Raman bands on one, and pKa constant values of appropriate thiols on the other hand. These results imply thiol replacement of Met-80 from axial bond with heme iron and suggest that the force of Fe-L-cysteine axial bond is very close to the native axial bond (Fe-Met) for cyt c in neutral solution.  相似文献   

20.
Beta-lactamases are responsible for resistance to penicillins and related beta-lactam compounds. Despite numerous studies, the identity of the general base involved in the acylation step is still unclear. It has been proposed, on the basis of a previous pKa calculation and analysis of structural data, that the unprotonated Lys73 in the active site could act as the general base. Using a continuum electrostatic model with an improved treatment of the multiple titration site problem, we calculated the pKa values of all titratable residues in the substrate-free TEM-1 and Bacillus licheniformis class A beta-lactamases. The pKa of Lys73 in both enzymes was computed to be above 10, in good agreement with recent experimental data on the TEM-1 beta-lactamase, but inconsistent with the proposal that Lys73 acts as the general base. Even when the closest titratable residue, Glu166, is mutated to a neutral residue, the predicted downward shift of the pKa of Lys73 shows that it is unlikely to act as a proton abstractor in either enzyme. These results support a mechanism in which the proton of the active Ser70 is transferred to the carboxylate group of Glu166.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号