首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Photosynthesis Research - This review compares the three-dimensional structures of the solublec-type cytochromes that functionally link membrane-bound energy transducingcomplexes in algal,...  相似文献   

4.
5.
6.
7.
8.
9.
10.
Cytochrome b5 has been shown to stimulate, inhibit or have no effect on catalysis by P450 cytochromes. Its action is known to depend on the isozyme of cytochrome P450, the substrate, and experimental conditions. Cytochrome P450 2B4 (CYP 2B4) has been used in our laboratory as a model isozyme to study the role of cytochrome b5 in cytochrome P450 catalysis using two substrates, methoxyflurane and benzphetamine. One substrate is the volatile anesthetic, methoxyflurane, whose metabolism is consistently markedly stimulated by cytochrome b5. The other is benzphetamine, whose metabolism is minimally modified by cytochrome b5. Determination of the stoichiometry of the metabolism of both substrates showed that the amount of product formed is the net result of the simultaneous stimulatory and inhibitory actions of cytochrome b5 on catalysis. Site-directed mutagenesis studies revealed that both cytochrome b5 and cytochrome P450 reductase interact with cytochrome P450 on its proximal surface on overlapping but non-identical binding sites. Comparison of the rate of reduction of oxyferrous CYP 2B4 and the rate of substrate oxidation by cyt b5 and reductase with stopped-flow spectrophotometric and rapid chemical quench experiments has demonstrated that although cytochrome b5 and reductase reduce oxyferrous CYP 2B4 at the same rate, substrate oxidation proceeds more slowly in the presence of the reductase.  相似文献   

11.
In Rhodobacter sphaeroides, mutations that suppress the photosynthetic deficiency (spd mutations) of strains lacking cytochrome c2 (cyt c2) cause accumulation of a periplasmic cyt c2 isoform that has been designated isocytochrome c2 (isocyt c2). In this study, a new method for purification of both cyt c2 and isocyt c2 is described that uses periplasmic fluid as a starting material. In addition, antiserum to isocyt c2 has been used to demonstrate that all suppressor mutants contain an isocyt c2 of approximately 15 kDa. Western blot analysis indicates that isocyt c2 was present at lower levels in both wild-type and cyt c2 mutants than in spd-containing mutants. Although isocyt c2 is detectable under all growth conditions in wild-type cells, the highest level of isocyt c2 is present under aerobic conditions. Our results demonstrate that spd mutations increase the steady state level of isocyt c2 under photosynthetic conditions. Although the physiological function of isocyt c2 in wild-type cells is not known, we show that a nitrate-regulated protein in Rhodobacter sphaeroides f. sp. denitrificans also reacts with the isocyt c2 antiserum.  相似文献   

12.
Phosphorylation of microsome-bound cytochrome P-450 LM2   总被引:1,自引:0,他引:1  
The phosphorylation of a microsomal protein of rabbit liver by catalytic subunit of cyclic AMP-dependent protein kinase was shown, and the protein was identified as cytochrome P-450 LM2 on basis of comparative peptide-mapping. Acid hydrolysis of microsome-bound phosphorylated cytochrome P-450 revealed that phosphorylation occurred exclusively on serine residues. This serine residue was identified as the same residue phosphorylated in purified, soluble P-450, that is, serine in position 128.  相似文献   

13.
The extent of exposure of heme to solvent in horse heart cytochrome c and Rhodospirillum rubrum c2 was investigated to determine whether a correlation exists between the properties of these oxidation-reduction proteins and their heme environments. Solvent perturbation absorption difference spectra were measured using ethylene glycol, glycerol, and sucrose at concentrations between 0 and 30%. Cytochrome c appears to exhibit a somewhat greater extent of heme exposure than cytochrome c2 for both the oxidized and reduced states. These results suggest that the lower oxidation-reduction potential of cytochrome c may in part be due to a greater extent of exposure of the heme. The oxidized state of both proteins appears to exhibit a greater exposure than that of the reduced state which is consistent with a more favorable environment for the charge on the ferric heme coordination center.  相似文献   

14.
15.
16.
17.
Kinetics of electron transfer from soluble cytochrome c2 to the tetraheme cytochrome c have been measured in isolated reaction centers and in membrane fragments of the photosynthetic purple bacterium Rhodopseudomonas viridis by time-resolved flash absorption spectroscopy. Absorbance changes kinetics in the region of cytochrome -bands (540–560 nm) were measured at 21 °C under redox conditions where the two high-potential hemes (c-559 and c-556) of the tetraheme cytochrome were chemically reduced. After flash excitation, the heme c-559 donates an electron to the special pair of bacteriochlorophylls and is then re-reduced by heme c-556. The data show that oxidized heme c-556 is subsequently re-reduced by electron transfer from reduced cytochrome c2 present in the solution. The rate of this reaction has a non-linear dependence on the concentration of cytochrome c2, suggesting a (minimal) two-step mechanism involving the f ormation of a complex between cytochrome c2 and the reaction center, followed by intracomplex electron transfer. To explain the monophasic character of the reaction kinetics, we propose a collisional mechanism where the lifetime of the temporary complex is short compared to electron transfer. The limit of the halftime of the bimolecular process when extrapolated to high concentrations of cytochrome c2 is 60 ± 20 s. There is a large ionic strength effect on the kinetics of electron transfer from cytochrome c2 to heme c-556. The pseudofirst-order rate constant decreases from 1.1 × 107 M-1 s-1 to 1.3 × 106 M-1 s-1 when the ionic strength is increased from 1 to 1000 mM. The maximum rate (1.1 × 107 M-1 s-1) was obtained at about 1 mM ionic strength. This dependence of the rate on ionic strength s uggests that attractive electrostatic interactions contribute to the binding of cytochrome c2 with the tetraheme cytochrome. On the basis of our data and of previous molecular modelling, it is proposed that cytochrome c2 docks close to the low-potential heme c-554 and reduces heme c-556 via c-554.  相似文献   

18.
Deletion of the cytochrome c2 gene in the purple bacterium Rhodobacter sphaeroides renders it incapable of phototrophic growth (strain cycA65). However, suppressor mutants which restore the ability to grow phototrophically are obtained at relatively high frequency (1-10 in 10(7)). We examined two such suppressors (strains cycA65R5 and cycA65R7) and found the expected complement of electron transfer proteins minus cytochrome c2: SHP, c', c551.5, and c554. Instead of cytochrome c2 which elutes from DEAE-cellulose between SHP and cytochrome c', at about 50 mM ionic strength in wild-type extracts, we found a new high redox potential cytochrome c in the mutants which elutes with cytochrome c551.5 at about 150 mM ionic strength. The new cytochrome is more acidic than cytochrome c2, but is about the same size or slightly smaller (13,500 Da). The redox potential of the new cytochrome from strain cycA65R7 (294 mV) is about 70 mV lower than that of cytochrome c2. The 280 nm absorbance of the new cytochrome is smaller than that of cytochrome c2, which suggests that there is less tryptophan (the latter has two residues). In vitro kinetics of reduction by lumiflavin and FMN semiquinones show that the reactivity of the new cytochrome is similar to that of cytochrome c2, and that there is a relatively large positive charge (+2.6) at the site of reduction, despite the overall negative charge of the protein. This behavior is characteristic of cytochromes c2 and unlike the majority of bacterial cytochromes examined. Fourteen out of twenty-four of the N-terminal amino acids of the new cytochrome are identical to the sequence of cytochrome c2. The N-termini of the cycA65R5 and cycA65R7 cytochromes were the same. The kinetics and sequence data indicate that the new protein may be a cytochrome c2 isozyme, which is not detectable in wild-type cells under photosynthetic growth conditions. We propose the name iso-2 cytochrome c2 for the new cytochrome produced in the suppressor strains.  相似文献   

19.
20.
Lys 109, Lys 112 and Glu 1 of cytochrome c2 from Rhodospirillum rubrum G-9 are about 4-fold less reactive towards acetic anhydride when cytochrome c2 is bound to the isolated photosynthetic reaction center from the same organism. The three shielded residues are clustered together on the "backside" of cytochrome c2. This contrasts with mitochondrial cytochrome c where "frontside" lysines are protected by different physiological electron transfer partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号