首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
As ecosystem engineers, Sphagnum mosses control their surroundings through water retention, acidification and peat accumulation. Because water retention avoids desiccation, sphagna are generally intolerant to drought; however, the literature on Sphagnum desiccation tolerance (DT) provides puzzling results, indicating the inducible nature of their DT. To test this, various Sphagnum species and other mesic bryophytes were hardened to drought by (i) slow drying; (ii) ABA application and (iii) chilling or frost. DT tolerance was assessed as recovery of chlorophyll fluorescence parameters after severe desiccation. We monitored the seasonal course of DT in bog bryophytes. Under laboratory conditions, following initial de‐hardening, untreated Sphagnum shoots lacked DT; however, DT was induced by all hardening treatments except chilling, notably by slow drying, and in Sphagnum species of the section Cuspidata. In the field, sphagna in hollows and lawns developed DT several times during the growing season, responding to reduced precipitation and a lowered water table. Hummock and aquatic species developed DT only in late autumn, probably as a response to frost. Sphagnum protonemata failed to develop DT; hence, desiccation may limit Sphagnum establishment in drier habitats with suitable substrate chemistry. Desiccation avoiders among sphagna form compact hummocks or live submerged; thus, they do not develop DT in the field, lacking the initial desiccation experience, which is frequent in hollow and lawn habitats. We confirmed the morpho‐physiological trade‐off: in contrast to typical hollow sphagna, hummock species invest more resources in water retention (desiccation avoidance), while they have a lower ability to develop physiological DT.  相似文献   

2.
Desiccation tolerant (DT) plants withstand complete cellular dehydration, reaching relative water contents (RWC) below 30% in their photosynthetic tissues. Desiccation sensitive (DS) plants exhibit different degrees of dehydration tolerance (DHT), never surviving water loss >70%. To date, no procedure for the quantitative evaluation of DHT extent exists that is able to discriminate DS species with differing degrees of DHT from truly DT plants. We developed a simple, feasible and portable protocol to differentiate between DT and different degrees of DHT in the photosynthetic tissues of seed plants and between fast desiccation (< 24 h) tolerant (FDT) and sensitive (FDS) bryophytes. The protocol is based on (1) controlled desiccation inside Falcon tubes equilibrated at three different relative humidities that, consequently, induce three different speeds and extents of dehydration and (2) an evaluation of the average percentage of maximal photochemical efficiency of PSII (Fv/fm) recovery after rehydration. Applying the method to 10 bryophytes and 28 tracheophytes from various locations, we found that (1) imbibition of absorbent material with concentrated salt‐solutions inside the tubes provides stable relative humidity and avoids direct contact with samples; (2) for 50 ml capacity tubes, the optimal plant amount is 50–200 mg fresh weight; (3) the method is useful in remote locations due to minimal instrumental requirements; and (4) a threshold of 30% recovery of the initial Fv/fm upon reaching RWC ≤ 30% correctly categorises DT species, with three exceptions: two poikilochlorophyllous species and one gymnosperm. The protocol provides a semi‐quantitative expression of DHT that facilitates comparisons of species with different morpho‐physiological traits and/or ecological attributes.  相似文献   

3.
《Journal of bryology》2013,35(3):171-177
Abstract

Vascular plants are typically endohydric and are killed by drying beyond 30% relative water content. Bryophytes are ectohydric and are typically desiccation tolerant (DT). Mosses in open sun-exposed habitats show major electron flow to oxygen and high levels of non-photochemical quenching (NPQ) in chlorophyll fluorescence measurements. This has been regarded as a main source of photoprotection for these plants. The aim of the work described in this paper was to explore the rate and extent of relaxation of this quenching, and to seek evidence of its nature and consequences. Sequences of measurements were made during illumination at various intensities and a subsequent dark period. Light-response curves were constructed using dithiothreitol (DTT) as an inhibitor of violaxanthin de-epoxidase to provide additional evidence of the proportion of NPQ mediated by the xanthophyll cycle. The relaxation curves were fitted by exponential decay curves. A double-exponential fit to curves for the sun-adapted species gave a fast phase with a halflife of ca 6–16 seconds, and a slow phase with a halflife of ca 100–300 seconds. Shade species were best fitted by single-exponential curves. A persistent offset remained of ca 5–23% of the pre-darkening NPQ. Light-response curves for several species showed NPQ reduced in the presence of DTT to similar proportions of the control. Around 70–95% of NPQ in the bryophytes investigated relaxed with a halflife of ca 2–5 minutes. The fast phase of the double-exponential fit is consistent with likely rates of decay of the trans-thylakoid pH gradient and re-epoxidation of zeaxanthin. This leads to the same conclusion as the effect of DTT in depressing NPQ. The contrast in physiology between bryophytes and vascular plants reflects the different selection pressures facing leaf cells of poikilohydric plants and the mesophyll cells of vascular plants, and their divergent evolutionary histories since the mid-Palaeozoic.  相似文献   

4.
Shoots of bryophytes collected in the desiccated state from the field are likely to be hardened to desiccation tolerance (DT) to varying degrees. To account for this, most studies on DT include a relatively short deacclimation period. However, no study has experimentally determined the appropriate deacclimation time for any bryophyte species. Our purposes are to (i) determine if ‘field effects’ are biologically relevant to DT studies and how long a deacclimation period is required to remove them; and (ii) utilise field versus cultured shoot responses within the context of a deacclimation period to elucidate the ecological strategy of DT. Our hypothesis (based on an extensive literature on DT) is that a deacclimation period from 24 to 72 h should be sufficient to eliminate historical stress effects on the physiology of the shoots and allow an accurate determination of the inherent ecological DT strategy (constitutive or inducible). We determined, however, using chlorophyll fluorescence and visual estimates of shoot damage, that field‐collected shoots of the desert moss Crossidium crassinerve required an experimental deacclimation period of >7 days before field effects were removed, and revealed an ecological DT strategy of inducible DT. If the deacclimation period was <6 days, the shoot response conformed to an ecological strategy of constitutive protection. Thus the presence of field effects can obscure the ecological strategy of desiccation tolerance exhibited by the species, and this translates into a need to re‐evaluate previous mechanistic and ecological studies of desiccation tolerance in plants.  相似文献   

5.
The evolution of vegetative desiccation tolerance in land plants   总被引:16,自引:0,他引:16  
Oliver  Melvin J.  Tuba  Zoltán  Mishler  Brent D. 《Plant Ecology》2000,151(1):85-100
Vegetative desiccation tolerance is a widespread but uncommon occurrence in the plant kingdom generally. The majority of vegetative desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 60 to 70 species of ferns and fern allies, and approximately 60 species of angiosperms that exhibit some degree of vegetative desiccation tolerance. In this report we analyze the evidence for the differing mechanisms of desiccation tolerance in different plants, including differences in cellular protection and cellular repair, and couple this evidence with a phylogenetic framework to generate a working hypothesis as to the evolution of desiccation tolerance in land plants. We hypothesize that the initial evolution of vegetative desiccation tolerance was a crucial step in the colonization of the land by primitive plants from an origin in fresh water. The primitive mechanism of tolerance probably involved constitutive cellular protection coupled with active cellular repair, similar to that described for modern-day desiccation-tolerant bryophytes. As plant species evolved, vegetative desiccation tolerance was lost as increased growth rates, structural and morphological complexity, and mechanisms that conserve water within the plant and maintain efficient carbon fixation were selected for. Genes that had evolved for cellular protection and repair were, in all likelihood, recruited for different but related processes such as response to water stress and the desiccation tolerance of reproductive propagules. We thus hypothesize that the mechanism of desiccation tolerance exhibited in seeds, a developmentally induced cellular protection system, evolved from the primitive form of vegetative desiccation tolerance. Once established in seeds, this system became available for induction in vegetative tissues by environmental cues related to drying. The more recent, modified vegetative desiccation tolerance mechanism in angiosperms evolved from that programmed into seed development as species spread into very arid environments. Most recently, certain desiccation-tolerant monocots evolved the strategy of poikilochlorophylly to survive and compete in marginal habitats with variability in water availability.  相似文献   

6.
In higher plants the phytohormone ABA is involved in processes that are connected to water deficit, like stomatal closure or desiccation tolerance. In bryophytes, also containing ABA in their tissues, physiological functions remained uncertain for a long time. Quite recently, several papers have shown different effects of exogenously applied ABA: stomatal closure in Anthoceros, drought hardening in Funaria and production of the landform in Riccia. In all these cases the relevant conditions (water deficit) enhance the endogenous ABA level significantly. For induced desiccation tolerance, ABA serves as a mediator to induce specific proteins (dehydrins) strongly connected with this tolerance. Therefore, it can be concluded that in bryophytes ABA has the same function as in higher plants. It acts as a mediator in stress conditions.  相似文献   

7.
All bryophytes evolved desiccation tolerance (DT) mechanisms during the invasion of terrestrial habitats by early land plants. Are these DT mechanisms still present in bryophytes that colonize aquatic habitats? The aquatic bryophyte Fontinalis antipyretica Hedw. was subjected to two drying regimes and alterations in protein profiles and sucrose accumulation during dehydration and rehydration were investigated. Results show that during fast dehydration, there is very little variation in protein profiles, and upon rehydration proteins are leaked. On the other hand, slow dehydration induces changes in both dehydration and rehydration protein profiles, being similar to the protein profiles displayed by the terrestrial bryophytes Physcomitrella patens (Hedw.) Bruch and Schimp. and, to what is comparable with Syntrichia ruralis (Hedw.) F. Weber and D. Mohr. During dehydration there was a reduction in proteins associated with photosynthesis and the cytoskeleton, and an associated accumulation of proteins involved in sugar metabolism and plant defence mechanisms. Upon rehydration, protein accumulation patterns return to control values for both photosynthesis and cytoskeleton whereas proteins associated with sugar metabolism and defence proteins remain high. The current results suggest that bryophytes from different ecological adaptations may share common DT mechanisms.  相似文献   

8.
The physiological basis of bryophyte production   总被引:6,自引:0,他引:6  
In the main features of their carbon metabolism and physiological responses, bryophytes behave as normal C:) plants. However, their small size and frequent poikilohydric habit have important effects on the context in which these characteristics are expressed, and on their environmental physiology. Many are tolerant of drying out to low water contents (c. 5–10%, of dry weight). Photosynthesis declines rapidly with water loss, and resumes with greater or lesser delay on remoistening. The rate and completeness of recovery depend on the intensity and duration of desiccation, and on drought-hardening (perhaps largely related to protection of cell components from oxidative damage) which lakes place as the bryophyte dries. Most bryophytes, including species of well-illuminated habitats, function in effect as shade plants, with low chlorophyll a/b ratios, and become light-saturated at relatively low irradiance. Boundary-layer resistance is critically important in determining water loss from bryophytes in many situations. The time for which a poikilohydric species can photosynthesize after rain is determined by storage capacity and rate of water loss, both strongly influenced by growth-form. In sheltered habitats with extensive bryophyte cover water loss is largely determined by radiation balance, and may be very slow in deeply shaded places. Bryophyte growth-forms must represent an adaptive balance between water economy and needs for light capture and carbon and mineral nutrient acquisition.  相似文献   

9.
Seed characteristics were measured in 71 Eastern Australian rainforest species representing 30 families. Sensitivity to desiccation to low moisture contents (< 10%) occurred in 42% of species. We estimate, based on findings from 100 species from this present study and previously published reports, that 49% of Eastern Australian rainforest species have non‐orthodox seeds. Germination level and time to 50% germination were not significantly different between desiccation sensitive (DS) and desiccation tolerant (DT) seeds. The estimation of seed desiccation sensitivity based on predictors is an important tool underpinning ex situ conservation efforts. Seed characteristics differed significantly between DS and DT seeds; that is, DS seeds had: (i) larger fruits (19 949 mg vs 8322 mg); (ii) larger seeds (1663 mg vs 202 mg); (iii) higher seed moisture contents (49.7% vs 35.5% fresh weight); (iv) lower oil content (7.3% vs 24.8% yield); and (v) less investment in seed coats (0.19 vs 0.48 seed coat ratio). Only 25% of DS seeded species had oily seeds compared with 87% of DT seeded species. Most green embryos were DS. Seed coat ratio was the best predictor of seed DS (80% correctly predicted). Seed moisture content at maturity was also related to germination time. Mean seed size was correlated (?0.657, P = 0.01) with mean seed oil content in 46 species. Further research on seed storage physiology of possible oily and/or DS seeded species is crucial to ensure future long‐term security of this biodiversity, particularly for species currently threatened in situ and/or of socioeconomic importance in Eastern Australian rainforests.  相似文献   

10.
While the majority of plants and animals succumb to water loss, desiccation tolerant organisms can lose almost all of their intracellular water and revive upon rehydration. Only about 300 ‘resurrection’ angiosperms and very few animals are desiccation tolerant. By contrast, many bryophytes and most lichens are desiccation tolerant and so are the seeds and pollen grains of most flowering plants. The current literature reveals that the extreme fluctuations in water content experienced by desiccation tolerant organisms are accompanied by equally extreme changes in cellular redox state. Strongly oxidizing conditions upon desiccation can cause irreversible oxidation of free cysteine residues of proteins, which can change protein structure and function, and contribute to protein denaturation. It appears likely that reversible formation of disulphide bonds, in particular through protein glutathionylation, contributes to the set of protection mechanisms that confer desiccation tolerance. Upon rehydration, de-glutathionylation can be catalyzed by glutaredoxins (GRXs) and protein disulphide bonds can be reduced through NADPH-dependent thioredoxins (TRXs). Due to their ability to survive severe oxidative stress, desiccation tolerant plants and seeds are excellent models to study protein redox regulation, which may provide tools for enhancing tolerance to drought and more generally, to oxidative stress, in crops.  相似文献   

11.
Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions in response to on-going climate and other environmental changes. Although the responses of soil organisms and plants to ecological gradients and perturbations do not always correlate, peatland monitoring is mainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributors to carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology and paleoecology. There is however little comparative data on the value of testate amoebae, vascular plants and bryophytes as bioindicators of micro-environmental gradients in peatlands.We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil temperature, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in four peatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plants and bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species or species-complexes).Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function models for inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (% variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions (micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants and bryophytes either individually or combined and considering the full diversity).Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindication value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzed on samples collected at any season (accessibility allowing and if precise sampling sites are well marked) – a clear advantage for biomonitoring and can be used to infer past changes from the peat record at the same taxonomic resolution. This simple approach could therefore be very useful for biomonitoring of peatlands.  相似文献   

12.
Plant functional trait analyses have focused almost exclusively on vascular plants, but bryophytes comprise ancient and diverse plant lineages that have widespread global distributions and important ecological functions in terrestrial ecosystems. We examined a diverse clade of dryland mosses, Syntrichia, and studied carbon balance during a precipitation event (C‐balance), a functional trait related to physiological functioning, desiccation tolerance, survival, and ecosystem carbon and nitrogen cycling. We examined variability in C‐balance among 14 genotypes of Syntrichia and measured an additional 10 physiological and 13 morphological traits at the cell, leaf, shoot, and clump level. C‐balance varied 20‐fold among genotypes, and highest C‐balances were associated with long, narrow leaves with awns, and small cells with thick cell walls, traits that may influence water uptake and retention during a precipitation event. Ordination analyses revealed that the axis most strongly correlated with C‐balance included the maximum chlorophyll fluorescence, Fm, indicating the importance of photosystem II health for C exchange. C‐balance represents a key functional trait in bryophytes, but its measurement is time intensive and not feasible to measure on large scales. We propose two models (using physiological and morphological traits) to predict C‐balance, whereby identifying simpler to measure traits for trait databases.  相似文献   

13.
The moss Physcomitrella patens has been used as a model organism to study the induction of desiccation tolerance (DT), but links between dehydration rate, the accumulation of endogenous abscisic acid (ABA) and DT remain unclear. In this study, we show that prolonged acclimation of P. patens at 89% relative humidity (RH) [?16 MPa] can induce tolerance of desiccation at 33% RH (?153 MPa) in both protonema and gametophore stages. During acclimation, significant endogenous ABA accumulation occurred after 1 day in gametophores and after 2 days in protonemata. Physcomitrella patens expressing the ABA‐inducible EARLY METHIONINE promoter fused to a cyan fluorescent protein (CFP) reporter gene revealed a mostly uniform distribution of the CFP increasing throughout the tissues during acclimation. DT was measured by day 6 of acclimation in gametophores, but not until 9 days of acclimation for protonemata. These results suggest that endogenous ABA accumulating when moss cells experience moderate water loss requires sufficient time to induce the changes that permit cells to survive more severe desiccation. These results provide insight for ongoing studies of how acclimation induces metabolic changes to enable DT in P. patens.  相似文献   

14.
Water is a major limiting factor in growth and reproduction in plants. The ability of tissues to survive desiccation is commonly found in seeds or pollen but rarely present in vegetative tissues. Resurrection plants are remarkable as they can tolerate almost complete water loss from their vegetative tissues such as leaves and roots. Metabolism is shut down as they dehydrate and the plants become apparently lifeless. Upon rehydration these plants recover full metabolic competence and ‘resurrect’. In order to cope with desiccation, resurrection plants have to overcome a number of stresses as water is lost from the cells, among them oxidative stress, destabilization or loss of membrane integrity and mechanical stress. This review will mainly focus on the effect of dehydration in angiosperm resurrection plants and some of the strategies developed by these plants to tolerate desiccation. Resurrection plants are important experimental models and understanding the physiological and molecular aspects of their desiccation tolerance is of great interest for developing drought‐tolerant crop species adapted to semi‐arid areas.  相似文献   

15.
Late embryogenesis‐abundant (LEA) proteins are one of the components involved in desiccation tolerance (DT) by maintaining cellular structures in the dry state. Among them, MtPM25, a member of the group 5 is specifically associated with DT in Medicago truncatula seeds. Its function is unknown and its classification as a LEA protein remains elusive. Here, evidence is provided that MtPM25 is a hydrophobic, intrinsically disordered protein that shares the characteristics of canonical LEA proteins. Screening protective activities by testing various substrates against freezing, heating and drying indicates that MtPM25 is unable to protect membranes but able to prevent aggregation of proteins during stress. Prevention of aggregation was also found for the water soluble proteome of desiccation‐sensitive radicles. This inhibition was significantly higher than that of MtEM6, one of the most hydrophilic LEA protein associated with DT. Moreover, when added after the stress treatment, MtPM25 is able to rapidly dissolve aggregates in a non‐specific manner. Sorption isotherms show that when it is unstructured, MtPM25 absorbs up to threefold more water than MtEM6. MtPM25 is likely to act as a protective molecule during drying and plays an additional role as a repair mechanism compared with other LEA proteins.  相似文献   

16.
17.
以云南哀牢山湿性常绿阔叶林中的附生苔藓植物为对象,研究林内4种树干附生苔藓植物阿萨羽苔(Plagiochila assamica Steph.)、西南树平藓(Homaliodendron montagneanum(Müll.Hal.)M.Fleisch.)、刀叶树平藓(H.scalpellifolium(Mitt.)M.Fleisch.)、大羽藓(Thuidium cymbifolium(Dozy et Molk.)Dozy et Molk.)的吸水力、失水特征和脱水耐性,稳定碳同位素(δ~(13)C)值,以及水分变化对苔藓净光合速率和荧光参数的影响。结果显示:(1)4种附生苔藓植物均具有较强的吸水能力和较低持水力,脱水耐性较强,脱水后均可迅速复水;(2)4种附生苔藓植物的δ~(13)C值较低,其水分利用效率小于其他维管束植物;除大羽藓外,其余3种附生苔藓雨季的δ~(13)C值与水分利用效率均高于干季;(3)4种附生苔藓植物的净光合速率(Pn)随着含水量的降低而降低,在含水量小于60%~80%时,其最大光化学效率(Fv/Fm)急剧下降,反映出这些附生苔藓植物的光合、荧光特性对水分变化非常敏感。  相似文献   

18.
The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition.  相似文献   

19.
The acquisition of desiccation tolerance (DT) in developing beech (Fagus sylvatica L.) seeds and the role of a dehydrin protein in this process were investigated. DT was determined by measurement of electrolyte leakage and germination capacity after drying to 10–12% moisture content (MC). In addition to mass maturity, the presence of heat-stable proteins, dehydrin accumulation and the peak of ABA content were measured in relation to the acquisition of DT. Mass maturity was achieved at 16 weeks after flowering (WAF). The germination capacity increased from 8% at 12 WAF to 80–90% after 16 WAF. Cell membrane integrity, measured as a decrease in electrolyte leakage after desiccation, was acquired at 16 WAF. Additionally, the ratio of heat-stable to soluble proteins was the highest at 16 WAF. One dehydrin-like protein with a molecular mass 44 kDa, named DHN44, was detected in embryonic axes at 16 WAF and in cotyledons at 17 WAF, and its gradual accumulation was observed in mature seeds. With regard to the acquisition of DT, the strongest correlations were detected between electrolyte leakage, DHN44 accumulation, and the percentage of heat-stable proteins. These results suggest that developing beech seeds become tolerant to desiccation at 16 WAF. The effect of desiccation and ABA treatment on DHN44 synthesis was tested before (14 WAF) and after the DT acquisition (18 WAF). Depending on the maturation stage desiccation and ABA treatment can induce or enlarge DHN44 expression.  相似文献   

20.
Plants of the monotypic Blossfeldia liliputana have the smallest bodies of all Cactaceae. The button-like plants with a diameter of usually some 10 mm occur in rock crevices in arid regions between S Bolivia and N Argentina. Based on observations and experiments in the field and in cultivation, morphology, anatomy, reproductive biology, certain aspects of ecophysiology, and behaviour under water stress are described. The very small flowers are autogamous; the arillate hairy seeds are unique within the family and represent a particular adaptation to ant dispersal. These CAM-plants virtually lack stomata: 0.6 stomata/mm2 represents the lowest number in terrestrial autotrophic vascular plants. However, all other xeromorphic features characteristic for globular cacti are absent (e.g. no thickened cuticle, no thickended outer cell walls, no thickened hypodermal layers). These features allow a high degree of desiccation: under water stress the plants lose up to 80% of their weight within one year and can withstand an additional drought of at least another year. Thus Blossfeldia is poikilohydric like many lichens and mosses and represents the unique life form of a succulent resurrection plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号