首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Testing 1,666 fecal or intestinal samples from healthy and diarrheic pigs, we obtained hemolytic Escherichia coli isolates from 593 samples. Focusing on hemolytic E. coli isolates without virulence-associated genes (VAGs) typical for enteropathogens, we found that such isolates carried a broad variety of VAGs typical for extraintestinal pathogenic E. coli.  相似文献   

2.
The putative virulence factor enterohemolysin, encoded by the ehlyA gene, has been closely associated with the pathogenic enterohemorrhagic Escherichia coli (EHEC) group. Escherichia coli isolates from effluents from seven geographically dispersed municipal wastewater treatment plants were screened for the presence of enterohemolysin. A total of 338 E. coli isolates were found to express the ehlyA gene. However, none of the isolates contained the toxin-encoding genes (stxA or stxB) associated with EHEC. Two of the 338 isolates possessed the virulence factor intimin, encoded by the eae gene. These findings suggest that the ehlyA gene may be widely distributed among non-EHEC isolates in the environment.  相似文献   

3.
4.
The widespread species Escherichia coli includes a broad variety of different types, ranging from highly pathogenic strains causing worldwide outbreaks of severe disease to avirulent isolates which are part of the normal intestinal flora or which are well characterized and safe laboratory strains. The pathogenicity of a given E. coli strain is mainly determined by specific virulence factors which include adhesins, invasins, toxins and capsule. They are often organized in large genetic blocks either on the chromosome ('pathogenicity islands'), on large plasmids or on phages and can be transmitted horizontally between strains. In this review we summarize the current knowledge of the virulence attributes which determine the pathogenic potential of E. coli strains and the methodology available to assess the virulence of E. coli isolates. We also focus on a recently developed procedure based on a broad-range detection system for E. coli-specific virulence genes that makes it possible to determine the potential pathogenicity and its nature in E. coli strains from various sources. This makes it possible to determine the pathotype of E. coli strains in medical diagnostics, to assess the virulence and health risks of E. coli contaminating water, food and the environment and to study potential reservoirs of virulence genes which might contribute to the emergence of new forms of pathogenic E. coli.  相似文献   

5.
Intestinal pathogenic Escherichia coli represents a global health problem for mammals, including humans. At present, diarrheagenic E. coli bacteria are grouped into seven major pathotypes that differ in their virulence factor profiles, severity of clinical manifestations, and prognosis. In this study, we developed and evaluated a one-step multiplex PCR (MPCR) for the straightforward differential identification of intestinal pathotypes of E. coli. The specificity of this novel MPCR was validated by using a subset of reference strains and further confirmed by PCR-independent pheno- and genotypic characterization. Moreover, we tested 246 clinical E. coli isolates derived from diarrhea patients from several distinct geographic regions. Interestingly, besides strains belonging to the defined and well-described pathotypes, we identified five unconventional strains expressing intermediate virulence factor profiles. These strains have been further characterized and appear to represent intermediate strains carrying genes and expressing factors associated with enteropathogenic E. coli, Shiga toxin-producing E. coli, enterotoxigenic E. coli, and enteroaggregative E. coli alike. These strains represent further examples of the extraordinary plasticity of the E. coli genome. Moreover, this implies that the important identification of specific pathotypes has to be based on a broad matrix of indicator genes. In addition, the presence of intermediate strains needs to be accounted for.  相似文献   

6.
[目的]揭示从我国部分地区仔猪腹泻或水肿病病猪体内分离到的300个大肠杆菌分离株所属病原型(pathotype)、毒力基因及其与O血清型的关系.[方法]O血清型采用常规的凝集试验进行测定,毒力基因采用PCR方法检测.[结果]通过对这300个分离株的O血清型及其毒素、紧密素和黏附素基因进行鉴定,结果显示除50株未定型、17株自凝外,测定出233个分离株的血清型,这些分离株覆盖了45个血清型,其中以0149、0107、0139、093和091为主,共133株,占定型菌株的57.1%;拥有est Ⅰ、estⅡ、elt、stx2e和eae A基因的菌株分别为102(34.0%)、190(63.3%)、81(27.0%)、57(19.0%)和54(18.0%)株;分离株中有51株K88基因阳性(其中菌毛表达率为100%),75株F18基因阳性(其中菌毛表达率为50.7%),在K88菌株中,0149血清型与est Ⅰ或estⅡ elt密切相关,在F18菌株中,0107血清型与est Ⅰ或estⅡ、0139血清型与stx2e紧密相关.依其毒力特征可将这些分离株分为以下6种类型:ETEC、STEC、AEEC、ETEC/STEC、AEEC/ETEC和AEEC/ETEC/STEC,分别拥有190、24、36、32、17和1个菌株,占分离株的63.3%、8.0%、12.0%、10.7%、5.7%和0.3%.通过分析这些分离株的O血清型、毒素类型和黏附素型之间的相关性:猪源ETEC以0149、0107、093和098等血清型为主,0149:K88菌株主要与estⅡ或estⅡ elt肠毒素相关,0107:F18菌株主要与estⅡ相关,093和098血清型菌株主要与estⅡ肠毒素相关;STEC菌株以0139:F18血清型为主,拥有stx2e;AEEC菌株拥有紧密素,无明显优势血清型;ETEC/STEC菌株以0107:F18和0116:F18血清型为主,主要与est Ⅰ stx2e或estⅡ stx2e密切相关,ETEC/AEEC菌株以091和0107血清型为主,全部拥有肠毒素est Ⅰ和紧密素基因.[结论]我国至少存在6种病原型的猪肠道致病性大肠杆菌,其中ETEC为我国部分地区猪大肠杆菌病的主要病原,同时其病原型日益复杂.  相似文献   

7.
A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by > or = 8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (< or = 3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.  相似文献   

8.
Aims:  To determine the degree of relatedness between isolates of Escherichia coli O157:H7 of human, bovine, ovine and porcine origin.
Methods and Results:  Escherichia coli O157:H7 isolates were compared using (i) PFGE Xba I patterns, (ii) PCR profiles of virulence genes and (iii) the DNA sequences of genes reported to play a role in pathogenicity. The 77 E. coli O157:H7 isolates demonstrated 49 different PFGE patterns of which, eight were common to multiple isolates, and the remaining 41 were distinct. Isolates of different origin did not correlate, except for one cluster consisting of two human and two beef isolates. The majority of animal isolates had the same PCR profiles of virulence genes as those isolated from clinical patients. Single nucleotide polymorphisms (SNPs) were identified in the sequence of a 255-bp region of the vtx2 subunit A gene.
Conclusions:  Six SNPs were detected in the vtx2 A gene, defining four different haplotypes. One nonsynonymous substitution encoded for an amino acid change from glutamic to aspartic acid.
Significance and Impact of the Study:  Results indicate that although E. coli O157:H7 isolates of differing origin were distinct by PFGE, the DNA sequences of the main virulence genes associated with human clinical illness were conserved.  相似文献   

9.
Upon studying the transmission of Escherichia coli from a sow to five of her piglets, we observed domination of the coliform flora in piglets by a single E. coli clone, especially after weaning. This haemolytic cloneH1 did not harbour any virulence determinants typical for intestinal pathogenic E. coli isolates from swine but had a virulence gene profile very similar to extraintestinal E. coli (ExPEC), including genes coding for P fimbriae and several iron acquisition systems, besides having an affiliation to the phylogenetic B2 group. Overall, we show that the presence of higher numbers of ExPEC-typical virulence-associated genes (VAGs) in clones correlate with their successful colonization ability in piglets. We conclude that VAGs typical for ExPEC also support intestinal colonization in healthy pigs. Faeces of healthy domestic pigs can harbour high numbers of ExPEC-similar E. coli and are suggested to be a potential risk for the transmission of such bacteria to other hosts.  相似文献   

10.
11.
The enteropathogenic role of cytotoxic necrotizing factor (CNF)-producing Escherichia coli was investigated by searching cnf genes among 2074 isolates from 200 children with and 200 without acute diarrhea in Brazil. Fourteen (7%) cases versus 10 (5%) control children carried at least one cnf positive isolate (P = 0.50) and most isolates expressed CNF type 1. DNA sequences of virulence factors of extraintestinal pathogenic E. coli (ExPEC) were detected in 78.6% of CNF1-producing isolates. Besides not being associated with human acute diarrhea, the CNF1-producing isolates here identified may represent potential ExPEC transitorily composing the normal intestinal flora.  相似文献   

12.
Genomes of prokaryotes differ significantly in size and DNA composition. Escherichia coli is considered a model organism to analyze the processes involved in bacterial genome evolution, as the species comprises numerous pathogenic and commensal variants. Pathogenic and nonpathogenic E. coli strains differ in the presence and absence of additional DNA elements contributing to specific virulence traits and also in the presence and absence of additional genetic information. To analyze the genetic diversity of pathogenic and commensal E. coli isolates, a whole-genome approach was applied. Using DNA arrays, the presence of all translatable open reading frames (ORFs) of nonpathogenic E. coli K-12 strain MG1655 was investigated in 26 E. coli isolates, including various extraintestinal and intestinal pathogenic E. coli isolates, 3 pathogenicity island deletion mutants, and commensal and laboratory strains. Additionally, the presence of virulence-associated genes of E. coli was determined using a DNA "pathoarray" developed in our laboratory. The frequency and distributional pattern of genomic variations vary widely in different E. coli strains. Up to 10% of the E. coli K-12-specific ORFs were not detectable in the genomes of the different strains. DNA sequences described for extraintestinal or intestinal pathogenic E. coli are more frequently detectable in isolates of the same origin than in other pathotypes. Several genes coding for virulence or fitness factors are also present in commensal E. coli isolates. Based on these results, the conserved E. coli core genome is estimated to consist of at least 3,100 translatable ORFs. The absence of K-12-specific ORFs was detectable in all chromosomal regions. These data demonstrate the great genome heterogeneity and genetic diversity among E. coli strains and underline the fact that both the acquisition and deletion of DNA elements are important processes involved in the evolution of prokaryotes.  相似文献   

13.
Bacteremia is the principal way of dissemination of local infections to distant organs. Escherichia coli bacteremia is almost always clinically significant, suggesting an increased risk of developing sepsis syndrome. Fifty-one E. coli bloodstream human isolates were analyzed using PCR technique for several molecular markers associated with extraintestinal virulence, and their phylogenetic group assignment, taking into account the link between the phylogenetic background and the intrinsic virulence of this species. Sixteen virulence genotypes have been identified, the majority of the blood isolates carrying the association of two genes. The genes encoding type 1 fimbria and aerobactin had the highest prevalence. As a confirmation of other studies, the strains assigned to E. coli phylogenetic group B2 exhibited the highest concentration of virulence genes, and represented almost half of the clinical blood isolates. The multifactorial virulence of E. coli strains isolated from invasive infections reflects a phylogenetic inheritance, and supports the concept of ExPEC pathotype as a subset of E. coli population involved in human infectious diseases. The surveillance of geographical variation of E. coli pathogenic clones is useful for epidemiological analysis.  相似文献   

14.
Extraintestinal pathogenic Escherichia coli (ExPEC) are of significant health concern. The emergence of drug resistant E. coli with high virulence potential is alarming. Lack of sufficient data on transmission dynamics, virulence spectrum and antimicrobial resistance of certain pathogens such as the uropathogenic E. coli (UPEC) from countries with high infection burden, such as India, hinders the infection control and management efforts. In this study, we extensively genotyped and phenotyped a collection of 150 UPEC obtained from patients belonging to a semi-urban, industrialized setting near Pune, India. The isolates representing different clinical categories were analyzed in comparison with 50 commensal E. coli isolates from India as well as 50 ExPEC strains from Germany. Virulent strains were identified based on hemolysis, haemagglutination, cell surface hydrophobicity, serum bactericidal activity as well as with the help of O serotyping. We generated antimicrobial resistance profiles for all the clinical isolates and carried out phylogenetic analysis based on repetitive extragenic palindromic (rep)-PCR. E. coli from urinary tract infection cases expressed higher percentages of type I (45%) and P fimbriae (40%) when compared to fecal isolates (25% and 8% respectively). Hemolytic group comprised of 60% of UPEC and only 2% of E. coli from feces. Additionally, we found that serum resistance and cell surface hydrophobicity were not significantly (p = 0.16/p = 0.51) associated with UPEC from clinical cases. Moreover, clinical isolates exhibited highest resistance against amoxicillin (67.3%) and least against nitrofurantoin (57.3%). We also observed that 31.3% of UPEC were extended-spectrum beta-lactamase (ESBL) producers belonging to serotype O25, of which four were also positive for O25b subgroup that is linked to B2-O25b-ST131-CTX-M-15 virulent/multiresistant type. Furthermore, isolates from India and Germany (as well as global sources) were found to be genetically distinct with no evidence to espouse expansion of E. coli from India to the west or vice-versa.  相似文献   

15.
Although the number of Escherichia coli bacteria in surface waters can differ greatly between locations, relatively little is known about the distribution of E. coli pathotypes in surface waters used as sources for drinking or recreation. DNA microarray technology is a suitable tool for this type of study due to its ability to detect high numbers of virulence and antimicrobial resistance genes simultaneously. Pathotype, phylogenetic group, and antimicrobial resistance gene profiles were determined for 308 E. coli isolates from surface water samples collected from diverse aquatic ecosystems at six different sites in the St. Clair River and Detroit River areas. A higher frequency (48%) of E. coli isolates possessing virulence and antimicrobial resistance genes was observed in an urban site located downstream of wastewater effluent outfalls than in the other examined sites (average of 24%). Most E. coli pathotypes were extraintestinal pathogenic E. coli (ExPEC) pathotypes and belonged to phylogenetic groups B2 and D. The ExPEC pathotypes were found to occur across all aquatic ecosystems investigated, including riverine, estuarine, and offshore lake locations. The results of this environmental study using DNA microarrays highlight the widespread distribution of E. coli pathotypes in aquatic ecosystems and the potential public health threat of E. coli pathotypes originating from municipal wastewater sources.  相似文献   

16.
AIMS: To assess the presence of virulence genes in environmental and foodborne Escherichia coli isolates using the TaqMan PCR system. METHODS AND RESULTS: Three TaqMan pathogen detection kits called O157:H7, StxI and StxII were used to investigate the presence of virulence genes in Escherichia coli isolates. All 54 foodborne E. coli O157:H7 isolates showed expected results using these kits. Ninety (15%) of 604 environmental isolates gave positive amplification with an O157:H7-specific kit. TaqMan PCR amplification products from these 90 isolates were analysed by agarose gel electrophoresis, and 90% (81 of 90) of the environmental samples contained the expected PCR product. Sixty-six of these 90 were chosen for serotyping tests and only 35% (23 of 66) showed agglutination with both anti-O157 and anti-H7 antibodies. Further ribotyping of 16 sero-positive isolates in an automated Riboprinter did not identify these to be O157:H7. Multiplex PCR with primers for eaeA, stxI and stxII genes was used to confirm the TaqMan results in 10 selected environmental isolates. CONCLUSIONS: All three TaqMan pathogen detection kits were useful for virulence gene analysis of prescreened foodborne O157:H7 isolates, while the O157:H7-specific kit may not be suitable for virulence gene analysis of environmental E. coli isolates, because of high false positive identification. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to rapidly identify the presence of pathogenic E. coli in food or environmental samples is essential to avert outbreaks. These results are of importance to microbiologists seeking to use TaqMan PCR to rapidly identify pathogenic E. coli in environmental samples. Furthermore, serotyping may not be a reliable method for identification of O157:H7 strains.  相似文献   

17.
Escherichia coli is generally described as a commensal species with occasional pathogenic strains. Due to technological limitations, there is currently little information concerning the prevalence of pathogenic E. coli strains in the environment. For the first time, using a DNA microarray capable of detecting all currently described virulence genes and commonly found antimicrobial resistance genes, a survey of environmental E. coli isolates from recreational waters was carried out. A high proportion (29%) of 308 isolates from a beach site in the Great Lakes carried a pathotype set of virulence-related genes, and 14% carried antimicrobial resistance genes, findings consistent with a potential risk for public health. The results also showed that another 8% of the isolates had unusual virulence gene combinations that would be missed by conventional screening. This new application of a DNA microarray to environmental waters will likely have an important impact on public health, epidemiology, and microbial ecology in the future.  相似文献   

18.
Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands.  相似文献   

19.
A combination of uni- and multiplex PCR assays targeting 58 virulence genes (VGs) associated with Escherichia coli strains causing intestinal and extraintestinal disease in humans and other mammals was used to analyze the VG repertoire of 23 commensal E. coli isolates from healthy pigs and 52 clinical isolates associated with porcine neonatal diarrhea (ND) and postweaning diarrhea (PWD). The relationship between the presence and absence of VGs was interrogated using three statistical methods. According to the generalized linear model, 17 of 58 VGs were found to be significant (P < 0.05) in distinguishing between commensal and clinical isolates. Nine of the 17 genes represented by iha, hlyA, aidA, east1, aah, fimH, iroN(E. coli), traT, and saa have not been previously identified as important VGs in clinical porcine isolates in Australia. The remaining eight VGs code for fimbriae (F4, F5, F18, and F41) and toxins (STa, STb, LT, and Stx2), normally associated with porcine enterotoxigenic E. coli. Agglomerative hierarchical algorithm analysis grouped E. coli strains into subclusters based primarily on their serogroup. Multivariate analyses of clonal relationships based on the 17 VGs were collapsed into two-dimensional space by principal coordinate analysis. PWD clones were distributed in two quadrants, separated from ND and commensal clones, which tended to cluster within one quadrant. Clonal subclusters within quadrants were highly correlated with serogroups. These methods of analysis provide different perspectives in our attempts to understand how commensal and clinical porcine enterotoxigenic E. coli strains have evolved and are engaged in the dynamic process of losing or acquiring VGs within the pig population.  相似文献   

20.
Formally included in the larger category of extraintestinal pathogenic Escherichia coli (ExPEC), the uropathogenic E. coli remains the most frequent cause of urinary tract infection (UTI), an important endemic health problem. The genomic DNA of E. coli urinary isolates from adults diagnosed with urinary tract infections and of E. coli fecal isolates from healthy subjects was analysed by PCR for the presence of virulence factor encoding genes pap, sfa/foc, afa, hly and cnf and by field inversion gel electrophoresis (FIGE) fingerprinting of XbaI DNA macrorestriction fragments. The aim was to obtain more detailed microbiological data regarding the community circulating strains in respect of their virulence potential and genetic relatedness. Almost 70% of the urinary strains carried at least one of the target virulence genes, and only 35.5% of the fecal E. coli strains were positive in the PCR screening. Taking into account the virulence genotypes exhibited, a part of the strains isolated from the urinary tract could be defined as belonging to the ExPEC pathotype. A unique FIGE profile was obtained for each of the selected isolates and the dendrogram generated by Taxotron software package analysis suggested a polyclonal population of potential uropathogenic strains clustered into 14 groups of only 60% similarity. For better understanding the epidemiology of UTIs, diseases commonly caused by such a heterogeneous species like E. coli, molecular analysis methods could be essential due to their increased power of identification and fingerprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号