首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Polycomb group (PcG) proteins are required to maintain stable repression of the homeotic genes and others throughout development. The PcG proteins ESC and E(Z) are present in a prominent 600-kDa complex as well as in a number of higher-molecular-mass complexes. Here we identify and characterize a 1-MDa ESC/E(Z) complex that is distinguished from the 600-kDa complex by the presence of the PcG protein Polycomblike (PCL) and the histone deacetylase RPD3. In addition, the 1-MDa complex shares with the 600-kDa complex the histone binding protein p55 and the PcG protein SU(Z)12. Coimmunoprecipitation assays performed on embryo extracts and gel filtration column fractions indicate that, during embryogenesis E(Z), SU(Z)12, and p55 are present in all ESC complexes, while PCL and RPD3 are associated with ESC, E(Z), SU(Z)12, and p55 only in the 1-MDa complex. Glutathione transferase pulldown assays demonstrate that RPD3 binds directly to PCL via the conserved PHD fingers of PCL and the N terminus of RPD3. PCL and E(Z) colocalize virtually completely on polytene chromosomes and are associated with a subset of RPD3 sites. As previously shown for E(Z) and RPD3, PCL and SU(Z)12 are also recruited to the insertion site of a minimal Ubx Polycomb response element transgene in vivo. Consistent with these biochemical and cytological results, Rpd3 mutations enhance the phenotypes of Pcl mutants, further indicating that RPD3 is required for PcG silencing and possibly for PCL function. These results suggest that there may be multiple ESC/E(Z) complexes with distinct functions in vivo.  相似文献   

5.
6.
7.
The cytosolic protein synaphin/complexin critically regulates fast neurotransmitter release at the synapse by binding to SNARE complex. However, the exact mechanism of its action remains unclear, and very little is known about how it is physiologically regulated. Here we show that synaphins (Syps) 1 and 2 can be phosphorylated in vitro by protein kinase CK2 (CK2). The only phosphorylation site by CK2 was serine-115 (Ser-115) of Syps 1 and 2. Syps 1 and 2 exhibited higher affinities to native and recombinant SNARE complexes when phosphorylated at Ser-115. We found Ser-115-phosphorylated Syp 1 (pS115-Syp 1) in the cytosolic fraction of the rat brain using polyclonal antibody specific to pS115-Syps 1 and 2. These results suggest that the activity of Syp is regulated by CK2 phosphorylation of its Ser-115 in vivo. The phosphorylation may provide a new route for modulating fast neurotransmitter release.  相似文献   

8.
The Extra sex combs (ESC) protein is a Polycomb group (PcG) repressor that is a key noncatalytic subunit in the ESC-Enhancer of zeste [E(Z)] histone methyltransferase complex. Survival of esc homozygotes to adulthood based solely on maternal product and peak ESC expression during embryonic stages indicate that ESC is most critical during early development. In contrast, two other PcG repressors in the same complex, E(Z) and Suppressor of zeste-12 [SU(Z)12], are required throughout development for viability and Hox gene repression. Here we describe a novel fly PcG repressor, called ESC-Like (ESCL), whose biochemical, molecular, and genetic properties can explain the long-standing paradox of ESC dispensability during postembryonic times. Developmental Western blots show that ESCL, which is 60% identical to ESC, is expressed with peak abundance during postembryonic stages. Recombinant complexes containing ESCL in place of ESC can methylate histone H3 with activity levels, and lysine specificity for K27, similar to that of the ESC-containing complex. Coimmunoprecipitations show that ESCL associates with E(Z) in postembryonic cells and chromatin immunoprecipitations show that ESCL tracks closely with E(Z) on Ubx regulatory DNA in wing discs. Furthermore, reduced escl+ dosage enhances esc loss-of-function phenotypes and double RNA interference knockdown of ESC/ESCL in wing disc-derived cells causes Ubx derepression. These results suggest that ESCL and ESC have similar functions in E(Z) methyltransferase complexes but are differentially deployed as development proceeds.  相似文献   

9.
The ubiquitin-mediated proteolysis of cyclin E plays a central role in cell-cycle progression, and cyclin E accumulation is a common event in cancer. Cyclin E degradation is triggered by multisite phosphorylation, which induces binding to the SCF(Fbw7) ubiquitin ligase complex. Structures of the Skp1-Fbw7 complex bound to cyclin E peptides identify a doubly phosphorylated pThr380/pSer384 cyclin E motif as an optimal, high-affinity degron and a singly phosphorylated pThr62 motif as a low-affinity one. Biochemical data indicate that the closely related yeast SCF(Cdc4) complex recognizes the multisite phosphorylated Sic1 substrate similarly and identify three doubly phosphorylated Sic1 degrons, each capable of high-affinity interactions with two Cdc4 phosphate binding sites. A model that explains the role of multiple cyclin E/Sic1 degrons is provided by the findings that Fbw7 and Cdc4 dimerize, that Fbw7 dimerization enhances the turnover of a weakly associated cyclin E in vivo, and that Cdc4 dimerization increases the rate and processivity of Sic1 ubiquitination in vitro.  相似文献   

10.
Miyata Y  Nishida E 《The FEBS journal》2007,274(21):5690-5703
The CK2-dependent phosphorylation of Ser13 in cell division cycle protein 37 (Cdc37), a kinase-specific heat shock protein 90 (Hsp90) cochaperone, has previously been reported to be essential for the association of Cdc37 with signaling protein kinases [Bandhakavi S, McCann RO, Hanna DE & Glover CVC (2003) J Biol Chem278, 2829-2836; Shao J, Prince T, Hartson SD & Matts RL (2003) J Biol Chem278, 38117-38220; Miyata Y & Nishida E (2004) Mol Cell Biol24, 4065-4074]. Here we describe a new phospho-specific antibody against Cdc37 that recognizes recombinant purified Cdc37 only when incubated with CK2 in the presence of Mg(2+) and ATP. The replacement of Ser13 in Cdc37 by nonphosphorylatable amino acids abolished binding to this antibody. The antibody was specific for phosphorylated Cdc37 and did not crossreact with other CK2 substrates such as Hsp90 and FK506-binding protein 52. Using this antibody, we showed that complexes of Hsp90 with its client signaling kinases, Cdk4, MOK, v-Src, and Raf1, contained the CK2-phosphorylated form of Cdc37 in vivo. Immunofluorescent staining showed that Hsp90 and the phosphorylated form of Cdc37 accumulated in epidermal growth factor-induced membrane ruffles. We further characterized the phosphorylation of Cdc37 using phospho-affinity gel electrophoresis. Our analyses demonstrated that the CK2-dependent phosphorylation of Cdc37 on Ser13 caused a specific gel mobility shift, and that Cdc37 in the complexes between Hsp90 and its client signaling protein kinases was in the phosphorylated form. Our results show the physiological importance of CK2-dependent Cdc37 phosphorylation and the usefulness of phospho-affinity gel electrophoresis in protein phosphorylation analysis.  相似文献   

11.
The Drosophila esc-like gene (escl) encodes a protein very similar to ESC. Like ESC, ESCL binds directly to the E(Z) histone methyltransferase via its WD region. In contrast to ESC, which is present at highest levels during embryogenesis and low levels thereafter, ESCL is continuously present throughout development and in adults. ESC/E(Z) complexes are present at high levels mainly during embryogenesis but ESCL/E(Z) complexes are found throughout development. While depletion of either ESCL or ESC by RNAi in S2 and Kc cells has little effect on E(Z)-mediated methylation of histone H3 lysine 27 (H3K27), simultaneous depletion of ESCL and ESC results in loss of di- and trimethyl-H3K27, indicating that either ESC or ESCL is necessary and sufficient for di- and trimethylation of H3K27 in vivo. While E(Z) complexes in S2 cells contain predominantly ESC, in ESC-depleted S2 cells, ESCL levels rise dramatically and ESCL replaces ESC in E(Z) complexes. A mutation in escl that produces very little protein is viable and exhibits no phenotypes but strongly enhances esc mutant phenotypes, suggesting they have similar functions. esc escl double homozygotes die at the end of the larval period, indicating that the well-known “maternal rescue” of esc homozygotes requires ESCL. Furthermore, maternal and zygotic over-expression of escl fully rescues the lethality of esc null mutant embryos that contain no ESC protein, indicating that ESCL can substitute fully for ESC in vivo. These data thus indicate that ESC and ESCL play similar if not identical functions in E(Z) complexes in vivo. Despite this, when esc is expressed normally, escl appears to be entirely dispensable, at least for development into morphologically normal fertile adults. Furthermore, the larval lethality of esc escl double mutants, together with the lack of phenotypes in the escl mutant, further suggests that in wild-type (esc+) animals it is the post-embryonic expression of esc, not escl, that is important for development of normal adults. Thus escl appears to function in a backup capacity during development that becomes important only when normal esc expression is compromised.  相似文献   

12.
13.
14.
15.
16.
Human RNPS1 was originally characterized as a pre-mRNA splicing activator in vitro and was shown to regulate alternative splicing in vivo. RNPS1 was also identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and a role for RNPS1 in postsplicing processes has been proposed. Here we demonstrate that RNPS1 incorporates into active spliceosomes, enhances the formation of the ATP-dependent A complex, and promotes the generation of both intermediate and final spliced products. RNPS1 is phosphorylated in vivo and interacts with the CK2 (casein kinase II) protein kinase. Serine 53 (Ser-53) of RNPS1 was identified as the major phosphorylation site for CK2 in vitro, and the same site is also phosphorylated in vivo. The phosphorylation status of Ser-53 significantly affects splicing activation in vitro, but it does not perturb the nuclear localization of RNPS1. In vivo experiments indicated that the phosphorylation of RNPS1 at Ser-53 influences the efficiencies of both splicing and translation. We propose that RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 phosphorylation.  相似文献   

17.
The ESC-E(Z) complex of Drosophila melanogaster Polycomb group (PcG) repressors is a histone H3 methyltransferase (HMTase). This complex silences fly Hox genes, and related HMTases control germ line development in worms, flowering in plants, and X inactivation in mammals. The fly complex contains a catalytic SET domain subunit, E(Z), plus three noncatalytic subunits, SU(Z)12, ESC, and NURF-55. The four-subunit complex is >1,000-fold more active than E(Z) alone. Here we show that ESC and SU(Z)12 play key roles in potentiating E(Z) HMTase activity. We also show that loss of ESC disrupts global methylation of histone H3-lysine 27 in fly embryos. Subunit mutations identify domains required for catalytic activity and/or binding to specific partners. We describe missense mutations in surface loops of ESC, in the CXC domain of E(Z), and in the conserved VEFS domain of SU(Z)12, which each disrupt HMTase activity but preserve complex assembly. Thus, the E(Z) SET domain requires multiple partner inputs to produce active HMTase. We also find that a recombinant worm complex containing the E(Z) homolog, MES-2, has robust HMTase activity, which depends upon both MES-6, an ESC homolog, and MES-3, a pioneer protein. Thus, although the fly and mammalian PcG complexes absolutely require SU(Z)12, the worm complex generates HMTase activity from a distinct partner set.  相似文献   

18.
Apolipoprotein-E (apoE) plays an important role in neuronal lipid transport and is thought to stabilize microtubules by preventing tau hyperphosphorylation. ApoE is also associated with insoluble amyloid detected in Alzheimer disease brain lesions. The apoE C-terminal shares several physicochemical features with alpha-synuclein, another neuronal apolipoprotein-like protein. Alpha-synuclein is phosphorylated by protein kinase CK2 (CK2) at an atypical PSD/E motif in vivo and in vitro. We identified a similar PSD/E motif in apoE and therefore investigated its potential phosphorylation by CK2 in vitro. When a [(32)P]-labeling approach was used, CK2 readily phosphorylated purified human apoE as well as recombinant forms of human apoE3 and apoE4. Using liquid chromatography mass spectrometry techniques, we mapped the major apoE CK2 phosphorylation site to Ser296 within the apoE PSD/E motif. We also found that apoE potently activated CK2 as demonstrated by increased CK2beta subunit autophosphorylation and by increased phosphorylation of tau when the latter was added to the kinase reaction mixtures. Other proteins such as apolipoprotein A-I and albumin did not effectively activate CK2. The phosphorylation of apoE by CK2 as well as the activation of CK2 by apoE may be relevant in vivo where apoE, CK2, and tau are co-localized with additional CK2 targets on neuronal microtubules.  相似文献   

19.
Geminin contributes to cell cycle regulation by a timely inhibition of Cdt1p, the loading factor required for the assembly of pre-replication complexes. Geminin is expressed during S and G2 phase of the HeLa cell cycle and phosphorylated soon after its synthesis. We show here that Geminin is an excellent substrate for protein kinase CK2 in vitro; and that the highly specific CK2 inhibitor tetrabromobenzotriazole (TBB) blocks the phosphorylation of Geminin in HeLa protein extracts and HeLa cells in vivo. The sites of CK2 phosphorylation are located in the carboxyterminal region of Geminin, which carries several consensus sequence motifs for CK2. We also show that a minor phosphorylating activity in protein extracts can be attributed to glycogen synthase kinase 3 (GSK3), which most likely targets a central peptide in Geminin. Treatment of HeLa cells with TBB does not interfere with the ability of Geminin to interact with the loading factor Cdt1.  相似文献   

20.
We have previously identified Ser201 of Sic1, a yeast cyclin-dependent kinase inhibitor, as an in vitro target of protein kinase CK2. Here we present new evidence, by using specific anti-P-Ser201 antibodies and 2-D gel electrophoresis coupled to MALDI mass spectrometry analysis, that Sic1 is phosphorylated in vivo on Ser201 shortly after its de novo synthesis, during late anaphase in glucose-grown cells. This phosphorylation is also detected in Sic1 immunopurified from G1 cells. In agreement with these data we also show that the catalytic alpha' subunit of CK2, whose function is required for cell cycle progression, is detected in Sic1 immunopurified complexes, and that phosphorylation on Ser201 is reduced after CK2 inactivation at the non-permissive temperature in a cka1delta cka2(ts) yeast strain. These data strongly support the notion that CK2 phosphorylates Sic1 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号