首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Characterization of cold-sensitive secY mutants of Escherichia coli.   总被引:10,自引:2,他引:8       下载免费PDF全文
Mutations which cause poor growth at a low temperature, which affect aspects of protein secretion, and which map in or around secY (prlA) were characterized. The prlA1012 mutant, previously shown to suppress a secA mutation, proved to have a wild-type secY gene, indicating that this mutation cannot be taken as genetic evidence for the secA-secY interaction. Two cold-sensitive mutants, the secY39 and secY40 mutants, which had been selected by their ability to enhance secA expression, contained single-amino-acid alterations in the same cytoplasmic domain of the SecY protein. Protein export in vivo was partially slowed down by the secY39 mutation at 37 to 39 degrees C, and the retardation was immediately and strikingly enhanced upon exposure to nonpermissive temperatures (15 to 23 degrees C). The rate of posttranslational translocation of the precursor to the OmpA protein (pro-OmpA protein) into wild-type membrane vesicles in vitro was only slightly affected by reaction temperatures ranging from 37 to 15 degrees C, and about 65% of OmpA was eventually sequestered at both temperatures. Membrane vesicles from the secY39 mutant were much less active in supporting pro-OmpA translocation even at 37 degrees C, at which about 20% sequestration was attained. At 15 degrees C, the activity of the mutant membrane decreased further. The rapid temperature response in vivo and the impaired in vitro translocation activity at low temperatures with the secY39 mutant support the notion that SecY, a membrane-embedded secretion factor, participates in protein translocation across the bacterial cytoplasmic membrane.  相似文献   

2.
A cold-sensitive secY mutant (secY125) with an amino acid substitution in the first periplasmic domain causes in vivo retardation of protein export. Inverted membrane vesicles prepared from this mutant were as active as the wild-type membrane vesicles in translocation of a minute amount of radioactive preprotein. The mutant membrane also allowed enhanced insertion of SecA, and this SecA insertion was dependent on the SecD and SecF functions. These and other observations suggested that the early events in translocation, such as SecA-dependent insertion of the signal sequence region, is actually enhanced by the SecY125 alteration. In contrast, since the mutant membrane vesicles had decreased capacity to translocate chemical quantity of pro-OmpA and since they were readily inactivated by pretreatment of the vesicles under the conditions in which a pro-OmpA translocation intermediate once accumulated, the late translocation functions appear to be impaired. We conclude that this periplasmic secY mutation causes unbalanced early and late functions in translocation, compromising the translocase's ability to catalyze multiple rounds of reactions.  相似文献   

3.
Mutations in the Escherichia coli secB gene lead to protein export defects in vivo (Kumamoto, C.A., and Beckwith, J. (1985) J. Bacteriol. 163, 267-274). To demonstrate directly the participation of the secB gene product (SecB) in protein export, SecB was purified, and its effects on in vitro protein translocation were analyzed. SecB was purified from soluble extracts of a strain that overproduced it, by ammonium sulfate precipitation, DEAE-cellulose chromatography, and differential precipitation at acid pH. The chromatographic behavior on gel filtration columns indicated apparent molecular masses of approximately 90 kDa for both purified SecB and SecB in cytosolic extracts of wild type cells. When added to a translocation mixture, purified SecB stimulated pro-OmpA translocation into membrane vesicles. SecB also suppressed the thermoinduced defect in translocating activity of membranes derived from a secY24 mutant. The results of these in vitro studies and of previous in vivo studies demonstrate that SecB plays a direct role in normal protein export in E. coli.  相似文献   

4.
A Kuhn  G Kreil    W Wickner 《The EMBO journal》1987,6(2):501-505
The assembly of phage M13 procoat protein into the plasma membrane of Escherichia coli is independent of the secY protein. To test whether this is caused by the unusually small size of procoat, we fused DNA encoding 103 amino acids to the carboxy-terminal end of the procoat gene. The resulting fusion protein, which attains the same membrane-spanning conformation as mature coat protein, still does not require the secY function for membrane assembly. To determine whether the leader sequence governs interaction with the secY protein, we genetically exchanged the leader peptides between procoat and pro-OmpA, a protein which does require secY for its membrane assembly. Each of the resulting hybrid proteins assembles across the plasma membrane, though at a reduced rate. Membrane assembly of the fusion of procoat leader and OmpA required secY function, whereas assembly of the pro-OmpA leader/coat protein fusion was independent of secY. Properties of the entire procoat molecule, rather than its small size or a specific property of its leader peptide determines its mode of membrane assembly.  相似文献   

5.
K Shiba  K Ito  T Yura    D P Cerretti 《The EMBO journal》1984,3(3):631-635
We describe the properties of a temperature-sensitive mutant, ts24, of Escherichia coli. The mutant has a conditional defect in export of periplasmic and outer membrane proteins. At 42 degrees C, precursor forms of these proteins accumulate within the cell where they are protected from digestion by externally added trypsin. The accumulated precursors are secreted and processed very slowly at 42 degrees C. The mutation is complemented by expression of the wild-type secY (or prlA) gene, which has been cloned into a plasmid vector from the promoter-distal part of the spc ribosomal protein operon. The mutant has a single base change in the middle of the secY gene, which would result in the replacement of a glycine residue by aspartic acid in the protein product. These results demonstrate that the gene secY (prlA) is essential for protein translocation across the E. coli cytoplasmic membrane.  相似文献   

6.
Protein translocation across the Escherichia coli plasma membrane is facilitated by concerted actions of the SecYEG integral membrane complex and the SecA ATPase. A secY mutation (secY39) affects Arg357, an evolutionarily conserved and functionally important residue, and impairs the translocation function in vivo and in vitro. In this study, we used the "superactive" mutant forms of SecA, which suppress the SecY39 deficiency, to characterize the mutationally altered SecY39EG translocase. It was found that SecY39-mediated preprotein translocation exhibited absolute dependence on the proton motive force. The proton motive force-dependent step proved to lie before signal peptide cleavage. We suggest that the proton motive force assists in the initiation phase of protein translocation.  相似文献   

7.
G Matsumoto  T Yoshihisa    K Ito 《The EMBO journal》1997,16(21):6384-6393
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction. We identified a secY mutation (secY205), affecting the most carboxyterminal cytoplasmic domain, that did not allow ATP and preprotein-dependent productive SecA insertion, while allowing idling insertion without the preprotein. Thus, the secY205 mutation might affect the SecYEG 'channel' structure in accepting the preprotein-SecA complex or its opening by the complex. We isolated secA mutations that allele-specifically suppressed the secY205 translocation defect in vivo. One mutant protein, SecA36, with an amino acid alteration near the high-affinity ATP-binding site, was purified and suppressed the in vitro translocation defect of the inverted membrane vesicles carrying the SecY205 protein. The SecA36 protein could also insert into the mutant membrane vesicles in vitro. These results provide genetic evidence that SecA and SecY specifically interact, and show that SecY plays an essential role in insertion of SecA in response to a preprotein and ATP and suggest that SecA drives protein translocation by inserting into the membrane in vivo.  相似文献   

8.
To find factors participating in protein translocation in yeast, we screened a yeast genomic library for genes which, when introduced into Escherichia coli, suppressed secY24, a temperature sensitive mutation of an essential integral membrane protein (SecY) required for protein export. We isolated and characterized a gene (YSY6) which improved the translocation of the OmpA protein in mutant strain IQ85(secY24). It could also suppress another mutant [rplO215(Am)], in which the level of expression of the SecY protein is decreased at high-temperature. The YSY6 gene encodes a small amphiphilic peptide consisting of 65 amino acids, which can be expressed in E. coli cells.  相似文献   

9.
In the accompanying paper [Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) Eur. J. Biochem.269, 5564-5571], we showed that the precursor of outer-membrane protein PhoE of Escherichia coli with a Gly to Leu substitution at position -10 in the signal sequence (G-10L) is targeted to the SecYEG translocon via the signal-recognition particle (SRP) route, instead of via the SecB pathway. Here, we studied the fate of the mutant precursor in a prlA4 mutant strain. prlA mutations, located in the secY gene, have been isolated as suppressors that restore the export of precursors with defective signal sequences. Remarkably, the G-10L mutant precursor, which is normally exported in a wild-type strain, accumulated strongly in a prlA4 mutant strain. In vitro cross-linking experiments revealed that the precursor is correctly targeted to the prlA4 mutant translocon. However, translocation across the cytoplasmic membrane was defective, as appeared from proteinase K-accessibility experiments in pulse-labeled cells. Furthermore, the mutant precursor was found to accumulate when expressed in a secY40 mutant, which is defective in the insertion of integral-membrane proteins but not in protein translocation. Together, these data suggest that SecB and SRP substrates are differently processed at the SecYEG translocon.  相似文献   

10.
The suhB gene is located at 55 min on the Escherichia coli chromosome and encodes a protein of 268 amino acids. Mutant alleles of suhB have been isolated as extragenic suppressors for the protein secretion mutation (secY24), the heat shock response mutation (rpoH15), and the DNA synthesis mutation (dnaB121) (K. Shiba, K. Ito, and T. Yura, J. Bacteriol. 160:696-701, 1984; R. Yano, H. Nagai, K. Shiba, and T. Yura, J. Bacteriol. 172:2124-2130, 1990; S. Chang, D. Ng, L. Baird, and C. Georgopoulos, J. Biol. Chem. 266:3654-3660, 1991). These mutant alleles of suhB cause cold-sensitive cell growth, indicating that the suhB gene is essential at low temperatures. Little work has been done, however, to elucidate the role of the product of suhB in a normal cell and the suppression mechanisms of the suhB mutations in the aforementioned mutants. The sequence similarity shared between the suhB gene product and mammalian inositol monophosphatase has prompted us to test the inositol monophosphatase activity of the suhB gene product. We report here that the purified SuhB protein showed inositol monophosphatase activity. The kinetic parameters of SuhB inositol monophosphatase (Km = 0.071 mM; Vmax = 12.3 mumol/min per mg) are similar to those of mammalian inositol monophosphatase. The ssyA3 and suhB2 mutations, which were isolated as extragenic suppressors for secY24 and rpoH15, respectively, had a DNA insertion at the 5' proximal region of the suhB gene, and the amount of SuhB protein within mutant cells decreased. The possible role of suhB in E. coli is discussed.  相似文献   

11.
Y Akiyama  K Ito 《The EMBO journal》1987,6(11):3465-3470
The secY (prlA) gene product is an essential component of the Escherichia coli cytoplasmic membrane, and its function is required for the translocation of exocytoplasmic proteins across the membrane. We have analyzed the orientation of the SecY protein in the membrane by examining the hydropathic character of its amino acid sequence, by testing its susceptibility to proteases added to each side of the membrane, and by characterizing SecY-PhoA (alkaline phosphatase) hybrid proteins constructed by TnphoA transpositions. The orientation of the PhoA portion of the hybrid protein with respect to the membrane was inferred from its enzymatic activity as well as sensitivity to external proteases. The results suggest that SecY contains 10 transmembrane segments, five periplasmically exposed parts, and six cytoplasmic regions including the amino- and carboxyterminal regions.  相似文献   

12.
The secY gene product is an essential component of the Escherichia coli cytoplasmic membrane, which mediates the protein translocation across the membrane. We found a gene homologous to secY in the genome of the cyanobacterium Synechococcus PCC7942. The deduced amino acid sequence, 439 amino acids long, shows 43% homology with that of the E. coli secY. The hydrophobic profile suggests that the Synechococcus SecY protein is an integral membrane protein containing ten membrane-spanning segments, which are closely related to the E. coli counterpart. The SecY protein may participate in the protein translocation across the cytoplasmic or thylakoid membrane in Synechococcus PCC7942.  相似文献   

13.
The rate of energy-dependent transfer of pro-OmpA across Escherichia coli inner membrane vesicles in vitro was found to be a function of the ATP concentration. At concentrations above 0.1 mM ATP, the addition of a transmembrane electrochemical potential (proton motive force or pmf) increased the rate of pro-OmpA translocation. Additional experiments demonstrated that the overall reaction proceeded by at least two distinct energy-requiring steps. The first step required only ATP, was nearly unaffected by the pmf, and resulted in the insertion of the amino-terminal domain of pro-OmpA across the membrane. The insertion exposed the signal sequence cleavage site to the periplasmic side of the membrane, as measured by the appearance of a mature length translocation intermediate. However, this intermediate was partially exposed to the cytoplasmic side of the membrane. In a second energy-dependent step, either ATP or the pmf was sufficient to complete the translocation of mature length OmpA across the membrane.  相似文献   

14.
We previously reported (Shiba et al., J. Bacteriol. 160:696-701, 1984) the isolation and characterization of the mutation (ssy) that suppresses the protein export defect due to the secY24(Ts) mutation and causes cold-sensitive growth of Escherichia coli. This report describes more systematic isolation of ssy mutations. Among temperature-resistant revertants of the secY24 mutant, 65 mutants were found to be cold sensitive. These cold-sensitive mutations have been classified by genetic mapping. Twenty-two mutations fell into the ssyA class previously described. The remaining mutations were located at five new loci: ssyB at 9.5 min between tsx and lon; ssyD around 3 min; ssyE at 72.5 min near secY; ssyF at 20.5 min within rpsA; and ssyG at 69.0 min near argG. Two predominant classes, ssyA and ssyB, are probably affected in protein synthesis at the elongation step, whereas the ssyF mutant contained an altered form of ribosomal protein S1 (the gene product of rpsA). These cold-sensitive ssy mutations which suppress secY24 may define genes whose function is somehow involved in the secY-dependent protein secretion mechanism. However, the existence of multiple suppressor loci makes it unlikely that all of these genes specify additional components of the export machinery. A delicate balance may exist between the systems for synthesizing and exporting proteins.  相似文献   

15.
OmpA is a major protein of the outer membrane of Escherichia coli. It is made as a larger precursor, pro-OmpA, which requires a membrane potential for processing. We now show that pro-OmpA accumulates in the cytoplasm of cells treated with carbonyl cyanide m-chlorophenylhydrazone, an uncouple which lowers the membrane potential. Upon restoration of the potential, this pro-OmpA is secreted, processed, and assembled into the outer membrane. Pro-OmpA made in vitro is also recovered with the postribosomal supernatant. It is efficiently processed to OmpA by liposomes which have bacterial leader peptidase that is exclusively internally oriented. These experiments show that: (i) the insertion of pro-OmpA into the plasma membrane is not coupled to its synthesis; (ii) insertion is promoted by the transmembrane electrochemical potential; (iii) pro-OmpA can cross a bilayer spontaneously; and (iv) pro-OmpA is processed by the same leader peptidase which converts M13 procoat to coat.  相似文献   

16.
17.
As an approach for studying how SecY, an integral membrane protein translocation factor of Escherichia coli, interacts with other protein molecules, we isolated a dominant negative mutation, secY-d1, of the gene carried on a plasmid. The mutant plasmid severely inhibited export of maltose-binding protein and less severely of OmpA, when introduced into sec+ cells. It inhibited growth of secY and secE mutant cells, but not of secA and secD mutant cells or wild-type cells. The mutation deletes three amino acids that should be located at the interface of cytoplasmic domain 5 and transmembrane segment 9. We also found that some SecY-PhoA fusion proteins that lacked carboxy-terminal portions of SecY but retain a region from periplasmic domain 3 to transmembrane segment 7 were inhibitory to protein export. We suggest that these SecY variants are severely defective in catalytic function of SecY, which requires cytoplasmic domain 5 and its carboxy-terminal side, but retain the ability to associate with other molecules of the protein export machinery, which requires the central portion of SecY; they probably exert the 'dominant negative' effects by competing with normal SecY for the formation of active Sec complex. These observations should provide a basis for further genetic analysis of the Sec protein complex in the membrane.  相似文献   

18.
The spc operon of Escherichia coli encodes 11 ribosomal proteins and SecY. The secY gene and downstream rpmJ encoding a ribosomal protein, L36, are located distal to the promoter of the spc operon. It has been suggested that the stability of SecY mRNA depends on rpmJ unless a rho-independent terminator is inserted immediately downstream of secY. Moreover, it has been suggested that RpmJ is dispensable for E. coli. We constructed rpmJ null strains, AY101 (DeltarpmJ::tetA) and AY201 (DeltarpmJ::cat), by replacing rpmJ with tetA, which encodes a membrane protein responsible for tetracycline-resistance, and cat, which encodes a cytoplasmic chloramphenicol acetyltransferase, respectively. Depletion of RpmJ did not inhibit protein synthesis, whereas the growth of AY101 was defective at high temperatures. The level of SecY mRNA decreased significantly in both disruptants even though the rho-independent terminator was inserted immediately downstream of secY. Some periplasmic proteins were missing in the disruptants with a concomitant increase in the amount of phage shock protein in the inner membrane. These phenotypes caused by the rpmJ null mutation were corrected by a plasmid carrying secY, but not by one carrying rpmJ.  相似文献   

19.
K Ito  Y Hirota    Y Akiyama 《Journal of bacteriology》1989,171(3):1742-1743
Phenotypes of secY and secA temperature-sensitive mutants at permissive (low) temperature have been examined. The secY24 mutant was found to be extremely susceptible to export inhibition by a basal-level synthesis of the MalE-LacZ 72-47 hybrid protein or to overproduction of a normal secretory protein such as maltose-binding protein or beta-lactamase. Comparison of this phenotype of secY24 with those of the secY100 and secA51 mutants under similar conditions suggested that MalE-LacZ protein and overproduced secretory protein do not nonspecifically enhance the partial secretion defect but act synergistically with secY24 to inhibit protein export.  相似文献   

20.
Pulse-chase experiments were performed to follow the export of the Escherichia coli outer membrane protein OmpA. Besides the pro-OmpA protein, which carries a 21-residue signal sequence, three species of ompA gene products were distinguishable. One probably represented an incomplete nascent chain, another the mature protein in the outer membrane, and the third, designated imp-OmpA (immature processed), a protein which was already processed but apparently was still associated with the plasma membrane. The pro- and imp-OmpA proteins could be characterized more fully by using a strain overproducing the ompA gene products; pro- and imp-OmpA accumulated in large amounts. It could be shown that the imp- and pro-OmpA proteins differ markedly in conformation from the OmpA protein. The imp-OmpA, but not the pro-OmpA, underwent a conformational change and gained phage receptor activity upon addition of lipopolysaccharide. Utilizing a difference in detergent solubility between the two polypeptides and employing immunoelectron microscopy, it could be demonstrated that the pro-OmpA protein accumulated in the cytoplasm while the imp-OmpA was present in the periplasmic space. The results suggest that the pro-OmpA protein, bound to the plasma membrane, is processed, and the resulting imp-OmpA, still associated with the plasma membrane, recognizes the lipid A moiety of the lipopolysaccharide. The resulting conformational change may then force the protein into the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号