首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Liao Yan  Chen Guizhu 《生态学报》2007,(6):2208-2214
The impact of salinity on three arboreal mangrove plants, Sonneratia apetala (Sa), S. caseolaris (Sc) and Rhizophora stylosa (Rs), was studied. The three mangrove species were treated with different salinity levels over a three-month period. The response and adaptation of these three mangrove species to salinity were shown to be different. Net photosynthesis rate, stomata conductance and transpiration rate of leaves decreased and soluble sugar content in leaves increased, with salt concentration in all three mangrove species. The malondial dehyde (MDA) content in stems and leaves of Sa and Sc somewhat decreased when the salinity was lower than 10, but rapidly increased with increasing salt concentration. The MDA content in stems and leaves of Rs increased only when salinity was greater than 40. No changes were observed in the MDA content of roots in the three mangrove species. The adaptabilities of Sa and Sc to salt tolerance were limited. The more salt tolerant the mangrove Rs, the more likely the free oxygen radicals were eliminated through the increase in activity of superoxide dismutase (SOD). Results of this experiment identified salinity levels best suited for the growth and metabolism of the species, which provides information necessary for maintaining mangrove forestation along the South China coast.  相似文献   

2.
三种红树植物对盐胁迫的生理适应   总被引:2,自引:0,他引:2  
廖岩  陈桂珠 《生态学报》2007,27(6):2208-2214
无瓣海桑(Sa)、海桑(Sc)、红海榄(Rs)都属于乔木红树植物。这3种红树植物对盐度的敏感程度存在着差异,因此对不同标准的盐度的适应性也大不相同。通过对这3种红树植物用不同的盐度的水3个月的处理,发现Sa和Sc叶片的净光合作用速率、气孔导度、蒸腾速率都随着盐度的增加而降低。Sa,Sc,Rs叶片中的可溶性总糖含量随着盐度的升高整体上有上升趋势。Sa和Sc茎、叶中丙二醛(MDA)含量在低盐度时(〈10)略有降低,随着盐度升高,MDA含量急速升高,而Rs茎、叶中MDA只是在盐度超过40时才会有明显增长,3种红树植物根部的MDA含量变化都不明显。Rs可以依靠超氧化物歧化酶(SOD)来消除活性氧自由基,而红树植物Sa和Sc的耐盐性稍差,SOD对膜的保护能力不强。根据实验结果,可以得出对3种红树植物对盐度的适应范围,这将为指导中国南海海岸线上的红树造林计划提供依据。  相似文献   

3.
甘薯愈伤组织对干旱胁迫和盐胁迫的生理反应对比   总被引:12,自引:3,他引:12  
王兰兰  张立军  陈贵  李雪梅 《生态学杂志》2006,25(12):1508-1514
研究干旱胁迫和盐胁迫对“芦选一号”。日‘薯愈伤组织可溶性蛋白、可溶性糖、脯氨酸含量、SOD活性等的影响,从而在细胞水平上探讨甘薯抵御渗透胁迫的生理机制。并分析甘薯细胞对干旱处理(PEG-6000)和盐处理(NaCl)的反应差异。结果表明,可溶性蛋白质含量在干旱胁迫下缓慢升高,在轻度和中度盐胁迫的生长前期和中期有较大幅度的上升。但后期下降,表明短时间盐胁迫下,Na^+可能促进可溶性蛋白的合成;MDA在重度干旱胁迫下的含量显著低于重度盐胁迫,而SOD活性显著高于盐胁迫。表明在盐胁迫下细胞膜透性增加的主要原网是膜脂过氧化作用。干旱处理则是PEG-6000脱水的直接结果;重度干旱胁迫下,可溶性糖含量在短期内迅速升高,然后下降,而脯氨酸含量则在胁迫中后期迅速上升。脯氨酸可能有补偿可溶性糖含量降低的作用。  相似文献   

4.
三种泌盐红树植物对盐胁迫的耐受性比较   总被引:12,自引:2,他引:12  
叶勇  卢昌义  胡宏友  谭凤仪 《生态学报》2004,24(11):2444-2450
在盐度 0、5、15、2 5和 35 (% )下种植泌盐红树植物老鼠 (Acanthus ilicifolius)、桐花树 (Aegiceras corniculatum)和白骨壤(Avicennia marina)的繁殖体 ,以繁殖体萌发、幼苗生长、叶片泌盐量、叶片组织液盐含量和蒸腾蒸发量为指标 ,比较其对盐胁迫的耐受性。盐度提高对胎生种类桐花树和白骨壤的萌根速率无显著影响 ,但高盐度明显抑制非胎生种类老鼠的萌根。白骨壤的萌苗率不受盐度影响 ,但 2 5以上的盐度导致桐花树和老鼠的萌苗率下降。在盐度范围 5~ 35内 ,白骨壤幼苗的茎高生长随盐度的增加而减少 ,但减少量比桐花树小 ,而老鼠的减少量最大。老鼠因盐度提高而导致的叶片长度的减少量最大。在盐度提高的情况下 3种植物均具有泌盐量增加的效应 ,在任一盐度下泌盐能力的顺序均为白骨壤 >桐花树 >老鼠。淡水培养时 ,3种红树植物的叶片组织液盐含量 (约 2 % )均高于环境盐度 0。在盐度范围 5~ 35内 ,白骨壤的叶片组织液盐含量维持在较稳定的水平 (4 .3%~ 5 .0 % ) ,桐花树的变化范围为 2 .4 %~ 4 .5 % ,老鼠 2 .3%~ 5 .3%。淡水培养时 ,3种植物的蒸腾蒸发量类似 ,但盐性条件下白骨壤的蒸腾蒸发量显著高于桐花树和老鼠。随着盐度的增加 ,老鼠的蒸腾蒸发量下降最多。这些结果均表  相似文献   

5.
三种乡土树种在二种林分改造模式下的生理生态比较   总被引:14,自引:1,他引:14  
在丘陵荒山先锋树种马占相思林的林窗和均匀间伐50%(简称林冠层下)的2种林分改造模式下,研究了降真香、红椎和火力楠3种乡土树种生长初期的生理生态。结果表明,不管是在冬季或夏季,林窗中比林冠层下有更高的光合有效辐射(PAR)和相对湿度(RH),并且有较低的气温(Tair),林窗与林内最主要的差异是PAR的变化。生长在林窗里的植株比林冠层下的叶片小而厚,叶片单位面积干重增加,林窗里的植株叶片有较高的叶绿素含量。冬天,降真香和红椎在林窗里和林冠层下的净光合速率(Pn)日变化曲线都为单峰型,而火力楠在林窗下为双峰型,林冠层下为单峰型。3种树种在林窗里和林冠层下植株的蒸腾速率(Tr)有较相似的日进程,都为单峰型。2种林分改造模式下3种树种叶片气孔导度(GS)的日变化也较相似,与PAR的变化趋势相似,而与RH变化呈相反趋势。冬季。降真香和红椎在林窗的水分利用效率(WUE)比林冠层下稍高,而火力楠在林冠层下则比林窗高.但它们都无显著差异。夏天,3种树种在林窗和林冠层下的Pn与冬天有相似的结果。夏季红椎和降真香在林窗的Tr比林冠层下高,而火力楠在林冠层下的Tr比林窗高。Gs的变化趋势也与PAR相似,与RH变化趋势相反。夏季,降真香和火力楠的WUE在林窗比林冠层下高,但红椎却比林冠层下的低。3个树种中火力楠的WUE最高。3种树种在林窗和林冠层下的wUE都是冬季比夏季高。综合植物各项生理生态指标的分析结果可知,降真香和红椎较适宜种植在林窗里,而火力楠较能适应有一定郁闭度的林冠层下。  相似文献   

6.
采用人工模拟融冻胁迫方法,通过测定白三叶(Trifolium repens)和红三叶(T.prat-ense)在融冻胁迫中叶片细胞膜透性、MDA含量、抗氧化酶(SOD、POD、CAT)活力、渗透调节物(脯氨酸、可溶性糖和蛋白质)含量变化,以揭示未来气候变化对三叶草的影响。结果表明,经历融冻胁迫循环后抗冻力强的白三叶植株能恢复生长,而抗冻力弱的红三叶枯萎死亡。在融冻阶段,两三叶草叶片细胞膜透性增大、抗氧化酶活力增高、MDA和渗透调节物含量大幅增加;在冻融阶段,两三叶草叶片细胞膜透性降低、MDA含量下降、抗氧化酶活力降低。但在融冻胁迫循环中,白三叶叶片POD和CAT活力高于红三叶,脯氨酸含量较红三叶高5倍,但细胞膜透性低于红三叶。白三叶在-5℃抗逆生理指标达到最大值,而红三叶在-10℃。白三叶对环境温度变化反应敏感,在-5℃通过快速激活抗氧化酶系统和积累渗透调节物以抑制膜脂过氧化和维护细胞水分平衡在融冻适应上起重要作用。白三叶具有较强的抗融冻能力,是未来值得应用推广的优良园林绿化植物。  相似文献   

7.
Abscisic acid (ABA) and a synthetic analog, the 2- cis acetylenic alcohol, were compared to evaluate their effectiveness in conditioning seedlings of Douglas-fir [ Pseudotsuga menziesii (Mirb.) Franco], Engelmann spruce ( Picea engelmannii Parry) and lodgepole pine ( Pinus contorta Dougl.). Following preconditioning with ABA and the analog, seedlings were water stressed with the osmoticum polyethylene glycol (PEG) 3350. The effects of the growth regulators on transpiration, net photosynthesis, their ratio, called water use efficiency, and cell water relations parameters were then compared in stressed and unstressed plants. The antitranspirant action of these compounds varied depending on the species, the growth regulator, and the level of stress. ABA promoted transpiration in unstressed seedlings for all 3 species seven days after application. The analog was superior to ABA as an antitranspirant in osmotically-stressed lodgepole pine and Engelmann spruce, but neither compound was effective in Douglas-fir. For Douglas-fir and Engelmann spruce, net photosynthesis remained consistently higher in ABA-treated plants during the two levels of osmotic stress, relative to control and analog treatments. Neither compound had any effect on root development or cell water relations. ABA, and to a lesser extent its analog, hastened terminal bud formation in seedlings exposed to short days and low temperatures.  相似文献   

8.
黄河三角洲河滩与潮滩芦苇对盐胁迫的生理生态响应   总被引:1,自引:0,他引:1  
研究黄河三角洲两种生境芦苇对盐胁迫的生理生态响应差异,能为退化滨海湿地生态修复中芦苇植株来源的选择提供重要的理论支持。在盐胁迫(300 mmol/L NaCl)下,比较研究了黄河三角洲河滩芦苇(低盐生境)和潮滩芦苇(高盐生境)叶片中的Na+含量、根部分生区Na+流速、叶片的光合作用参数、H2O2的含量、抗氧化酶的活性、丙二醛和脯氨酸的含量。结果表明:盐胁迫显著提高了河滩芦苇叶片中Na+含量,但对潮滩芦苇叶片Na+影响不显著。进一步通过非损伤微测技术研究发现,盐胁迫后,潮滩芦苇比河滩芦苇的根部分生区的Na+外排流速更高(潮滩芦苇:(1982.05±122.74) pmol cm-2 s-1vs.(87.93±12.94) pmol cm-2 s-1,P<0.01;河滩芦苇:(1574.16±458.90) pmol cm-2  相似文献   

9.
The present study investigated the effects of NaCl, KCl and Na2SO4 salts on the C4 excreting halophyte Aeluropus littoralis in relation to growth, mineral status and photosynthesis in greenhouse conditions. Plantlets were subjected to five salinity levels: 0, 200, 400, 600 and 800 mM for 30 days. Growth decreased progressively with salinity increase, its reduction might be correlated with the high sodium (and/or chloride) accumulation in plant tissues, the decrease of leaf water status and the decline of the net photosynthetic rate and the intrinsic water use efficiency. Na2SO4 appeared more toxic than KCl and NaCl, especially at 200 mM. At 200 mM, Na2SO4 reduced plant growth by 61% while for other salt forms, the reductions were less than 20%. At this salt level, stomatal conductance showed a consistent pattern with plant growth and could adequately explain the variations between the effects of the three salt types.  相似文献   

10.
Haloxylon ammodendron, Calligonum mongolicum, Elaeagnus angustifolia, and Populus hosiensis had different adaptations to limited water availability, high temperature, and high irradiance. C. mongolicum used water more efficiently than did the other species. Because of low transpiration rate (E) and low water potential, H. ammodendron had low water loss suitable for desert conditions. Water use efficiency (WUE) was high in E. angustifolia, but high E and larger leaf area made this species more suitable for mesic habitats; consequently, this species is important in tree shelterbelts. P. hosiensis had low WUE, E, and photosynthesis rates, and therefore, does not prosper in arid areas without irrigation. High irradiances caused photoinhibition of the four plants. The decrease of photochemical efficiency was a possible non-stomata factor for the midday depression of C. mongolicum. However, the species exhibited different protective mechanisms against high irradiance under drought stress. H. ammodendron and C. mongolicum possessed a more effective antioxidant defence system than E. angustifolia. These three species showed different means of coping with oxidative stress. Hence an enzymatic balance is maintained in these plants under adverse stress conditions, and the concerted action of both enzymatic and non-enzymatic reactive oxygen species scavenging mechanisms is vital to survive adverse conditions.  相似文献   

11.
盐胁迫对2种珍贵速生树种种子萌发及幼苗生长的影响   总被引:3,自引:0,他引:3  
以1/2Hoagland营养液为基础培养液,研究了在0.1%、0.2%、0.4%和0.6%NaCl胁迫条件下,毛红椿〔Toona ciliata Roem. var. pubescens(Franch.)Hand.-Mazz.〕和水松〔Glyptostrobus pensilis(Staunt.ex D.Don)K.Koch〕的种子萌发和幼苗生长情况。结果表明,随着NaCl浓度的增加,2个树种的种子萌发率和简化苗木活力指数均明显下降,在0.1%、0.2%、0.4%和0.6%NaCl胁迫条件下,毛红椿和水松种子的最终萌发率分别为89.3%、87.3%、62.7%、32.0%和26.0%、16.7%、6.0%、3.3%,简化苗木活力指数分别为1.39~0.08和1.52~0.07,且毛红椿的种子萌发率和简化苗木活力指数均明显高于水松。萌发恢复实验结果表明,高浓度NaCl处理后的种子具有较高的萌发恢复率。根据实验结果初步判定毛红椿种子具有较强的耐盐性。  相似文献   

12.
The effect of salt stress (NaCl 85.7 or 110 mmol/L) was investigated in the triticale T300 and its parental species, Triticum dicoccum farrum (Triticum df) and Secale cereale cv. Petkus. Triticum df and T300 were more salt-tolerant than the rye (110 mmol/L NaCl was the highest concentration allowing rye growth to the three-leaf stage). Na+, K+ and Cl- ions accounted for almost half of the osmotic adjustment in Triticum df and T300, and up to 90% in rye. Salinity decreased the net photosynthesis and transpiration rates of the three cereals as compared to control plants, but induced no significant change in chlorophyll a fluorescence parameters. Water-use efficiency (WUE) increased with salinity. In the presence of 110 mmol/L NaCl, the K+/Na+ ratio decreased markedly in rye as compared to the other two cereals. Proline concentration, which increased in Triticum df and T300, could have protected membrane selectivity in favour of K+. Proline content remained low in rye, and increasing soluble sugar content did not appear to prevent competition between Na+ and K+. The salt sensitivity of rye could be due to low K+ uptake in the presence of a high NaCl concentration.  相似文献   

13.
The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis and enhanced cell membrane peroxidation, as exemplified by increased O2 production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis high-temperature acclimation (HH) showed much higher photosynthetic rates than those without pre-anthesis high-temperature acclimation (CH). Leaves of HH plants exhibited a higher Chl a/b ratio and lower chlorophyll/carotenoid ratio and superoxide anion radical release rate compared with those of the CH plants. In addition, antioxidant enzyme activities in HH plants were significantly higher than in CH. Coincidently, expressions of photosythesis-responsive gene encoding Rubisco activase B (RcaB) and antioxidant enzyme-related genes encoding mitochondrial manganese superoxide dismutase (Mn-SOD), chloroplastic Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and cytosolic glutathione reductase (GR) were all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant enzymes-related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号