首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miao Jin  Han Baoyu 《生态学报》2007,(10):3973-3982
The probing behaviors of the tea green leafhopper, Empoasca vitis (Gothe), on 9 tea cultivars were studied using video-text Direct Current-Electrical Penetration Graph, i.e., DC-EPG. The following 7 types of waveforms produced by the leafhopper stylet probing were determined: A, stylet pathway formation; S, salivation when stylets pierce into and stay in phloems; C, active ingestion before stylets reach phloems; E and F, passive ingestion in phloems; R, the insect resting with its stylet inserted into the leaf tissue and NP without probing. The 9 tested tea cultivars were categorized into 3 groups by the cluster analysis according to the number of probes per insect, waveform durations, or duration per probe of various waveforms on different tea cultivars. Waveforms S, E and F correlated to the main feeding activity of the leafhopper and may provide valuable information on predicting the resis-tance level of the tea plants to the leafhopper. The resistance level of the 9 tea cultivars to the leafhopper was ranked based on the durations of waveforms S, E and F, as well as the duration per probe including various waveforms. The ranking order of the resis-tance was: Longjingchangye > Hangdan > Zhenghedabaicha > Qianmei 601 > Hongyafoshuo > Zhongcha 102 > Zhongcha 302 > Longjing 43 > Anjibaicha, which corresponded to the resistance level determined by the population density (infestation) of the leaf-hopper on the 9 tea cultivars in the tea fields. Our study suggests that this simple and convenient DC-EPG technique might have great potential as a reliable tool to predict the resistance of tea cultivars to the tea leafhopper.  相似文献   

2.
苗进  韩宝瑜 《生态学报》2007,27(10):3973-3982
应用可视DC-EPG方法研究了假眼小绿叶蝉(Empoasca vitis Gothe)在9个品种茶苗上的口针刺探行为,共发现并初步确定了7种主要波型,即A波、S波、C波、E波、F波和R波、以及非刺探波NP波。A波为刺探波,S波为口针向韧皮部刺探和进入韧皮部中的分泌唾液波,C波为口针到达韧皮部之前的主动取食波,E波和F波为口针在韧皮部中吸收波,R波为取食间歇波。以该叶蝉在不同品种茶树上的平均刺探次数和各波形平均持续时间为指标,或者以其在不同品种茶树上含有各波形的单次刺探平均持续时间为指标,分别进行聚类分析,均将9个品种分为3个不同的组。S、E和F波对应着假眼小绿叶蝉在茶树上的主要取食活动,可能与茶树抗假眼小绿叶蝉的取食密切相关。以S、E和F各波的平均持续时间、以及含有各波形的单次刺探的平均持续时间为指标,对品种的抗性强弱排序,评判9个茶树品种抗叶蝉取食能力由强至弱的顺序为:龙井长叶、黄旦、政和大白茶、黔湄601、红芽佛手、中茶102、中茶302、龙井43和安吉白茶。该顺序与田间查得的9个品种茶树上假眼小绿叶蝉种群密度由小到大的顺序一致,表明DC-EPG方法简捷、可信度高,可作为检测茶树品种对叶蝉抗性的有效手段之一。  相似文献   

3.
4.
Within thrips feeding behaviour, sequences of four waveforms have been distinguished earlier in the DC-EPG, i.e. P, Q, R and S, representing mandibular stylet insertion, maxillary stylet insertion, ingestion, and repetitive mandibular insertion, respectively. During signal analysis it appeared that transitions from one waveform to the next were difficult to establish, making results ambiguous. In order to improve the quantitative reliability of the thrips' EPG data, the DC-EPGs were recorded concurrently with AC-EPG signals, thus providing two signals from the same activities containing different information. The additional AC information did not solve most quantification problems, however. We now propose to merge waveforms P, Q, and S, into 'puncture phase' (indicated by PQ) and waveforms R, T, and U, into 'feeding phase' (indicated by R), rather than trying to analyse all separate waveforms. This will provide a more reliable and much less laborious analysis of thrips probing behaviour. Waveforms T and U are two novel waveforms identified here by combining DC- and AC-EPG recordings with concurrent video recordings. Waveform T represents a single mandibular thrust embedded in waveform R and waveform U represents the end of a probe, presumably the retraction of the maxillary stylets.  相似文献   

5.
The stylet probing activities of the tea green leafhopper Empoasca vitis Gothe (Hemiptera: Cicadellidae) were studied using the DC electrical penetration graph (EPG) technique. Seven different EPG waveforms (i.e., Np, E1, E2, E3, E4, E5 and E6) were distinguished and characterized on susceptible tea leaves. In addition, four of them (i.e., Np, E1, E2, E3), together accounting for 97.08% of the total recording time, were behaviorally correlated with probing and non-probing activities using artificial diet observation with high-magnification video recording. At the start of stylet probing, waveform E1 always occurred at a variable voltage. E1, with all three of its waveform sub-types (E1-A to E1-C), was correlated with production of the salivary sheath trunk, stylet laceration, and channel cutting in viscous artificial diet. Afterwards, two types of high-amplitude waveforms, E2 and E3, followed. E2 had a highly regular, quasi-square wave, repetitive appearance, and lasted the longest duration of all E. vitis probing waveforms. E3 usually appeared after E2, and also exhibited a quasi-square wave feature similar to E2, but had much higher amplitude. Both waveforms E2 and E3 were correlated with active ingestion in liquid artificial diet. In addition, secretion of watery, enzymatic saliva was likely during E2. The active stylet movements and channel-cutting observed during the probing process indicate that E. vitis is a cell rupture feeder, not a salivary sheath feeder, as aphids and other leafhoppers. Thus, hopperburn damage to the tea plant is probably due to the cell rupture feeding strategy, similar to other hopperburning Empoasca species.  相似文献   

6.
Xylem-feeding is apparently the only requirement making an insect a competent vector of the bacterium Xylella fastidiosa, an organism responsible for the devastation of the Southern Italian olive forest and nowadays considered one of the most feared threats to agriculture and landscape in Europe, including vineyards. Here, we used the direct current-electrical penetration graph (DC-EPG) technique to compare and describe the feeding behaviour on grapevine of four xylem-feeding species considered candidate vectors of X. fastidiosa widespread in Europe, namely two spittlebugs (the meadow spittlebug Philaenus spumarius and the spittlebug Neophilaenus campestris) and two sharpshooter leafhoppers (the rhododendron leafhopper Graphocephala fennahi and the green leafhopper Cicadella viridis). We created a standard for the analysis of EPG waveforms recorded with a DC-EPG device, describing feeding activities performed by these insects from stylet insertion into the plant to withdrawal. This standard, along with freely available software, has been developed to harmonize the calculation of feeding behavioural parameters in xylem-feeders. The most relevant differences between the two vector taxa were the probing frequency and the dynamics of xylem ingestion. Sharpshooters tended to perform significantly more probes than spittlebugs. In contrast, the latter spent longer times in low-frequency xylem ingestion, characterized by scattered contractions of the cibarial dilator muscle interspersed with periods of pump inactivity. Cicadella viridis was the species displaying the highest frequency of the electrical pattern found to be associated with X. fastidiosa inoculation in spittlebugs (Xe). Feeding behavioural data presented here represent an important step forward for deepening our knowledge of xylem-sap feeding insects' interaction with both the host plants and the bacterium they transmit.  相似文献   

7.
Western flower thrips, Frankliniella occidentalis (Pergande) causes damage to plants when they are feeding. Also, this thrips species transmits Tomato spotted wilt virus (TSWV) during stylet penetration. We investigated the penetration behaviour (probing) of thrips on pepper leaves and on liquid diet by electrical penetration graph (EPG, DC-system) recording. In addition, we used high-magnification video observations to correlate EPG waveforms with the insect's posture, head movements, and muscle contractions. Also, EPGs were correlated with probing on liquid diets containing radio-active tracers to distinguish and quantify ingestion waveforms. The previously described waveforms P, Q, and R were distinguished and additionally, a new waveform 'S' was distinguished. Waveform P could be linked with mandibular leaf penetration, waveform Q presumably with insertion of the maxillary stylets, and waveform R with ingestion of cell contents, whereas waveform S could not be correlated with any behavioural activity. Histology of the feeding damage in pepper leaves shows that thrips ingests the contents of multiple cells per probe.  相似文献   

8.
Five distinct electrical penetration graph waveforms characterising the feeding behaviour of the leafhopper Cicadulina mbila Naudé (Homoptera: Cicadellidae) on maize (Zea mays L.) were obtained using a DC based system. The waveforms were distinguished by spectral features and by statistical analysis of their median voltages, durations and time to first waveform recording. By changing the polarity of the system voltage and the level of the input resistor it was shown that the waveforms are mainly determined by the electromotive force (emf) component. Based on the correlation between waveforms and the fine structure of the stylet pathways observed by transmission electron microscopy, insect's activities have been associated with five waveforms: stylet pathway formation (waveform 1), active ingestion (waveform 2), putative stylet work (waveform 3), salivation (waveform 4) and passive ingestion (waveform 5). Like waveform E1 and E2 of aphids, waveforms 4 and 5 of C. mbila correspond to feeding activities in sieve tubes. However, unlike aphids which probe briefly in non-vascular cells, waveform 2 corresponds to active ingestion in cells, where the cell content is partially ingested and hence the organelles' integrity severely affected. These observations suggest that this specific feeding feature, typical of leafhoppers, determines their ability to acquire geminivirus virions located in the plant cell nucleus.  相似文献   

9.
The sharpshooter Bucephalogonia xanthophis (Berg) (Homoptera: Cicadellidae) is a vector of the xylem‐limited bacterium, Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco‐Paul, and Brenner), which causes citrus variegated chlorosis. Despite the importance of citrus variegated chlorosis, the probing behavior of vectors on citrus and its implications for transmission of X. fastidiosa have not been studied. Here we studied electrical penetration graph (EPG‐DC system) waveforms produced by B. xanthophis on Citrus sinensis (L.) Osbeck (Rutaceae), and their relationships with stylet activities and xylem ingestion. Electrical penetration graph waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration on plant tissues. The main waveforms were correlated with histological observations of salivary sheaths in plant tissues and excretion analysis, in order to determine stylet activities and their precise position. Six waveforms and associated activities are described: (S) secretion of salivary sheath and intracellular stylet pathway, (R) resting during stylet pathway, (Xc) contact of stylets with xylem vessels, (Xi) active xylem ingestion, (N) interruption within the xylem phase (during Xc or Xi), and (W) withdrawal of stylet from the plant. The sharpshooter spent 91.8% of its probing time with its stylet in the xylem, where the main activity was ingestion (Xi: 97.5%). During a probe, the most likely sequence of events is secretion of salivary sheath and pathway (S) through epidermal and parenchyma cells (all individuals), followed by contact with xylem (Xc) (67.6% of all individuals) and ingestion (Xi) (88.3% of those that exhibit waveform Xc). The mean time to contact the xylem (Xc) and initiate ingestion (Xi) after onset of the first probe was 27.8 and 34.2 min, respectively. However, sustained xylem ingestion (Xi > 5 min) was established after 39.8 min, on average. This information is basic for future studies on the transmission mechanisms of X. fastidiosa and in order to establish control strategies aimed at interfering with this process.  相似文献   

10.
《Journal of Asia》2023,26(1):102034
Acyrthosiphon pisum (Harris) is a major pest of alfalfa worldwide. Here, we evaluated the resistance of eight alfalfa cultivars to A. pisum to identify resistant cultivars. The Giga-8 DC-EPG technique was used to record differences in electrical waveform patterns of probing behavior to identify cultivars with higher resistance. The frequency and average duration of EPG waveforms significantly differed among the cultivars, with eight documented waveforms (np, C, pd, E1, E2, sE2, F, and G). The longer duration of np, C, F and E1 waveforms reflected stronger resistance, whereas longer sE2 waveforms reflected weaker resistance. The resistance-related waveforms, np and C, occurred most frequently with Sardi 7, the time of the first E waveforms were the latest, duration of G waveforms and F waveforms were the longest, the feeding waveforms E2 and sE2 were the shortest, the time of reaching phloem for feeding was the latest, with notable resistance in leaf epidermis, mesophyll and phloem. The number of C waveforms occurring with Gibraltar were the least, duration of np waveforms was short, feeding waveforms were long, time to reach the phloem for feeding was early, and the resistance was not pronounced in various tissues. After comprehensive evaluation, the resistance levels of 8 alfalfa cultivars were as follows: High resistance, Sardi 7; Resistance, Zhongcao No. 3, Derby, WL319HQ; Low resistance, Golden Empress, Algonquin, Zhaodong; Susceptible, Gibraltar. In conclusion, evaluation of cultivar resistance to aphids can provide baseline data for selecting and planting cultivars with high local resistance.  相似文献   

11.
The tea green leafhopper, Empoasca onukiiMatsuda (Hemiptera: Cicadellidae: Typhlocybinae), is a serious pest of tea plants in East Asia. Previous work has shown that two tea germplasms, Cd19 and Cd289, sustain less hopperburn damage by E. onukii than does Camellia sinensis (L.) O. Kuntze cv. ‘Yabukita’ (Theaceae), and E. onukii excretes less honeydew on these germplasms than on the susceptible Yabukita. This study investigated the feeding behavior of E. onukii with a direct current electropenetrograph (DC EPG) to compare feeding behaviors, including ingestion, on resistant tea germplasms and Yabukita. Feeding behaviors on the resistant germplasms were significantly restricted, with few bouts of active ingestion of short duration and long periods of non‐probing, whereas E. onukii engaged in active ingestion of long duration many times on the susceptible cv. Yabukita. The tea germplasms, Cd19 and Cd289, therefore showed strong resistance to E. onukii. Furthermore, the shape of puncture holes left after probing was compared between the susceptible Yabukita and the resistant germplasms. The puncture holes on Cd19 and Cd289 were indistinct in shape and closed compared with those on Yabukita.  相似文献   

12.
Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce's disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips. Waveform B1 was ubitquious, interspersed throughout the other waveforms. B1 sub-type B1w was correlated with salivation followed by maxillary tip fluttering. This tip fluttering also occurred before and during B1 sub-type B1s, but was not directly correlated with either the occurrence or frequency of this waveform. Waveform B2 was correlated with sawing-like maxillary stylet movements, which usually occurred during salivary sheath branching. Waveform C was correlated with ingestion. Fluid outflow was also observed as a mechanism to clear the maxillary tips from debris during waveform C. This detailed understanding of stylet penetration behaviors of H. coagulata is an important step toward identifying the instant of bacterial inoculation which, in turn, will be applied to studies of disease epidemiology and development of host plant resistance.  相似文献   

13.
Abstract Electrical penetration graph (EPG) investigation showed that the secreting (El) and sucking (E2) times of tea aphid stylet in tea phloem were much longer than that on non‐host plants such as soybean and wheat. However, non‐feeding wave (np) was shorter than that on soybean and wheat. Duration of both El and E2 of stylet in tea phloem of 1st leaf, bud, 4th leaf and tender stem occupied 30.2%, 22.3%, 9.2% and 8.2% of the total experimental time, respectively. E2 wave was accompanied by honeydew secretion, with a time lag. Tea aphid preferred the tender parts, in which amino acids and other nutritional components were very rich. While the stylet of hungry tea aphid was forced to pierce phlom of non‐host plant (soybean or wheat), El and E2 waves were also produced, but the action of stylet could be disrupted by tea shoot volatile (10–6 V/V linalool, etc.) emitted near to the antennae. It was considered that before and under probing tea aphid made use of olfactory clues.  相似文献   

14.
The ultrastructure of the sensilla, and other structures, within the stylets and precibarium of Macrosteles fascifrons were examined by transmission and scanning electron microscopy. Precibarium is a new term, defined here, for the canal that precedes the cibarium inside the leafhopper head. Within the precibarium are found 20 chemosensilla and a previously undescribed structure, the precibarial valve. Twelve mechanosensilla, three in each stylet, are found within the maxillary and mandibular stylets. The relationship between all of these structures and feeding by the insect is detailed in a feeding mechanism hypothesis. It is concluded that leafhoppers (and probably all homopterans) utilize the precibarial chemosensilla alone for gustatory discrimination, the stylet sensilla for proprioception, and the precibarial valve for regulation of fluid uptake and compartmentalization of the sensilla.  相似文献   

15.
Detailed information on probing behavior of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is critical for understanding the transmission process of phloem‐limited bacteria (Candidatus Liberibacter spp.) associated with citrus ‘huanglongbing’ by this vector. In this study, we investigated stylet penetration activities of D. citri on seedlings of Citrus sinensis (L.) Osbeck cv. Pêra (Rutaceae) by using the electrical penetration graph (EPG‐DC system) technique. EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into plant tissues. The main waveforms were correlated with histological observations of salivary sheath termini in plant tissues, to determine the putative location of stylet tips. The behavioral activities were also inferred based on waveform similarities in relation to other Sternorrhyncha, particularly aphids and whiteflies. In addition, we correlated the occurrence of specific waveforms with the acquisition of the phloem‐limited bacterium Ca. Liberibacter asiaticus by D. citri. The occurrence of a G‐like xylem sap ingestion waveform in starved and unstarved psyllids was also compared. By analyzing 8‐h EPGs of adult females, five waveforms were described: (C) salivary sheath secretion and other stylet pathway activities; (D) first contact with phloem (distinct from other waveforms reported for Sternorrhyncha); (E1) putative salivation in phloem sieve tubes; (E2) phloem sap ingestion; and (G) probably xylem sap ingestion. Diaphorina citri initiates a probe with stylet pathway through epidermis and parenchyma (C). Interestingly, no potential drops were observed during the stylet pathway phase, as are usually recorded in aphids and other Sternorrhyncha. Once in C, D. citri shows a higher propensity to return to non‐probing than to start a phloem or xylem phase. Several probes are usually observed before the phloem phase; waveform D is observed upon phloem contact, always immediately followed by E1. After E1, D. citri either returns to pathway activity (C) or starts phloem sap ingestion, which was the longest activity observed.  相似文献   

16.
The citrus flatid planthopper, Metcalfa pruinosa Say (Hemiptera: Flatidae), is a very polyphagous native insect in North America and currently a serious pest in Europe and South Korea. To understand the feeding behaviour of M. pruinosa, stylet penetration behaviour of M. pruinosa was investigated with an electrical penetration graph (EPG) system. This study reports seven EPG waveforms related to M. pruinosa feeding behaviour: np (no stylet penetration), Mp1 (initiation of stylet penetration), Mp2 (stylet movement and salivation), Mp4 (phloem feeding), Mp4‐H (honeydew excretion), Mp5 (xylem feeding) and Mp6 (unknown). To determine respective feeding behaviour related to the Mp4 and Mp5 waveforms, stylets were cut with a laser beam, and the location of the stylet tip within plant tissue was examined. We found plant sap was exuded from the severed stylets only when the Mp4 waveform was observed, suggesting phloem sap ingestion. The stylet tip was located in the xylem region, indicating xylem‐feeding activity, when the Mp5 waveform was observed. The analysis of 24 different EPG parameters suggests that M. pruinosa stylets reached the vascular bundle of a plant within ca. 5 min and spend ca. 70% of the time feeding on xylem and phloem feeding. This is the first study that reports seven distinctive EPG waveforms with respect to the feeding behaviour of M. pruinosa which could help determine host specificity and host plant susceptibility.  相似文献   

17.
Plant penetration by western flower thrips (Frankliniella occidentalis (Pergande)) was analysed with the electrical penetration graph technique (EPG, DC-system). Thrips attached to a gold wire were included in an electrical circuit to record EPGs when penetrating the plant tissues with their stylets. Three basic EPG waveforms have been distinguished, correlated with stylet penetration into cells, salivation, and ingestion, respectively. The main difference with EPGs of Homoptera is the occurrence of continued separate penetrations that are not necessarily followed by ingestion. Insertion of the stylets causes strong voltage fluctuations in the EPG. We could confirm earlier evidence that penetration of cells and subsequent ingestion of (part of) the protoplast takes less than 20 seconds. Repeated short penetrations can be followed by a continuous feeding pattern during which the stylets are not withdrawn. The same sequence of waveforms is produced on other plant parts such as fruits or pollen grains. The specific waveforms are mainly caused by electromotive force (emf). The emf component was recorded with high resolution and the correlation of waveform details with activities of the cibarial muscle system is discussed.  相似文献   

18.
Abstract The tea green leafhopper, Empoasca vitis Göthe, is one of the most serious insect pests of tea plantations in mainland China. Over the past decades, this pest has been controlled mainly by spraying pesticides. Insecticide applications not only have become less effective in controlling damage, but even more seriously, have caused high levels of toxic residues in teas, which ultimately threatens human health. Therefore, we should seek a safer biological control approach. In the present study, key components of tea shoot volatiles were identified and behaviorally tested as potential leafhopper attractants. The following 13 volatile compounds were identified from aeration samples of tea shoots using gas chromatography‐mass spectrometry (GC‐MS): (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexenyl acetate, 2‐ethyl‐1‐hexanol, (E)‐ocimene, linalool, nonanol, (Z)‐butanoic acid, 3‐hexenyl ester, decanal, tetradecane, β‐caryophyllene, geraniol and hexadecane. In Y‐tube olfactometer tests, the following individual compounds were identified: (E)‐2‐hexenal, (E)‐ocimene, (Z)‐3‐hexenyl acetate and linalool, as well as two synthetic mixtures (called blend 1 and blend 2) elicited significant taxis, with blend 2 being the most attractive. Blend 1 included linalool, (Z)‐3‐hexen‐1‐ol and (E)‐2‐hexenal at a 1 : 1 : 1 ratio, whereas blend 2 was a mixture of eight compounds at the same loading ratio: (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexenyl acetate, 2‐penten‐1‐ol, (E)‐2‐pentenal, pentanol, hexanol and 1‐penten‐3‐ol. In tea fields, the bud‐green sticky board traps baited with blend 2, (E)‐2‐hexenal or hexane captured adults and nymphs of the leafhoppers, with blend 2 being the most attractive, followed by (E)‐2‐hexenal and hexane. Placing sticky traps baited with blend 2 or (E)‐2‐hexenal in the tea fields significantly reduced leafhopper populations. Our results indicate that the bud‐green sticky traps baited with tea shoot volatiles can provide a new tool for monitoring and managing the tea leafhopper.  相似文献   

19.
New Zealand is threatened by invasion of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), an important vector of Xylella fastidiosa, a gram-negative bacterium that causes Pierce's disease in grape (Vitis spp.) and scorch diseases in many other horticultural crops. Therefore, an understanding of the host acceptability, feeding behavior, and potential vector efficiency of glassy-winged sharpshooter on New Zealand crops is important. We tested host plant acceptance and feeding behaviors of glassy-winged sharpshooter on three common horticultural crops grown in New Zealand (apple [Malus spp.], grape, and citrus [Citrus spp.]), and a native plant (Metrosideros excelsa [=tomentosa] Richard, pohutukawa), using the electrical penetration graph (EPG) technique. Probing (stylet penetration) behaviors varied among the host plants, primarily due to differences in waveform event durations. Apple and grape were the most accepted host plants, on which glassy-winged sharpshooter spent the majority of its time on the plant probing and readily located and accepted a xylem cell for ingestion. This resulted in long durations of sustained xylem fluid ingestion. In contrast, pohutukawa was the least accepted host. On this plant, glassy-winged sharpshooter spent less time probing and engaged in longer and more frequent testing/searching and xylem-testing activities, rejected xylem cells frequently, and spent less time with stylets resting, before accepting a xylem cell and ultimately performing the same amount of sustained ingestion. Citrus plants contaminated with sublethal insecticide residues were intermediate between these extremes, with some acceptance of xylem, but less ingestion, probably due to presumed partial paralysis of the cibarial muscles. Implications of the results in terms of host plant acceptance and the development of a stylet penetration index are discussed.  相似文献   

20.
With the purpose of studying the feeding behavior of the brown citrus aphid pest, Toxoptera citricida (Kirkaldy) (Hemiptera: Aphididae), we compared stylet probing behaviors of third and fourth instars and adults on Citrus unshiu Marc (Rutaceae) seedlings using the electrical penetration graph (EPG) technique. EPG waveforms exhibited the full suite of stylet behaviors – stylet pathway, intracellular stylet puncture, phloem salivation (E1), sieve ingestion (E2), and xylem sap ingestion activities, plus the non‐penetration (Np) waveform. Before the phloem phase, the number of probes was significantly higher for third‐instar nymphs than for adults. Overall duration of Np events by adults was significantly lower than the duration of third and fourth instars. The number of short probes of the fourth instars was significantly higher than that of the adults. In the phloem phase, adults made more frequent and longer E1 events than the third and fourth instars. Third instars made more frequent but shorter E2 events, whereas adults made fewer but longer events. These results showed adults gained nutrients by increasing feeding time during phloem ingestion. Thus, the probability of phloem‐associated virus acquisition and transmission of T. citricida was higher in adults than in nymphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号