首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The polymerase chain reaction coupled with denaturing gradient gel electrophoresis (PCR-DGGE) has been used widely to determine species richness and structure of microbial communities in a variety of environments. Researchers commonly archive soil samples after routine chemical or microbial analyses, and applying PCR-DGGE technology to these historical samples offers evaluation of long-term patterns in bacterial species richness and community structure that was not available with previous technology. However, use of PCR-DGGE to analyze microbial communities of archived soils has been largely unexplored. To evaluate the stability of DGGE patterns in archived soils in comparison with fresh soils, fresh and archived soils from five sites along an elevational gradient in the Chihuahuan Desert were compared using PCR-DGGE of 16S rDNA. DNA from all archived samples was extracted reliably, but DNA in archived soils collected from a closed-canopy oak forest site could not be amplified. DNA extraction yields were lower for most archived soils, but minimal changes in bacterial species richness and structure due to archiving were noted in bacterial community profiles from four sites. Use of archived soils to determine long-term changes in bacterial community structure via PCR-DGGE appears to be a viable option for addressing microbial community dynamics for particular ecosystems or landscapes.  相似文献   

2.
The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples.  相似文献   

3.
Repetitive extraction of DNAs from surface sediments of a coastal wetland in Mai Po Nature Reserve (MP) of Hong Kong and surface Baijiang soils from a rice paddy (RP) in Northeast China was conducted to compare the microbial diversity in this study. Community structures of ammonia/ammonium-oxidizing microorganisms in these samples were analyzed by PCR-DGGE technique. The diversity and abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing (anammox) bacteria were also analyzed based on archaeal and bacterial ammonia monooxygenase subunit A encoding (amoA) and anammox bacterial 16S rRNA genes, respectively. DGGE profiles of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes showed a similar pattern among all five repetitively extracted DNA fractions from both MP and RP, except the anammox bacteria in RP, indicating a more diverse anammox community retrieved in the second to the fifth fractions than the first one. Both soil and marine group AOA were detected while soil and coastal group AOB and Scalindua-anammox bacteria were dominant in MP. Soil group AOA and marine group AOB were dominant in RP, while both Scalindua and Kuenenia species were detected in RP. Pearson correlation analysis showed that the abundance of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes was significantly correlated with the DNA concentrations of the five DNA fractions from MP, but not from RP (except the archaeal amoA gene). Results suggest that anammox bacteria diversity may be biased by insufficient DNA extraction of rice paddy soil samples.  相似文献   

4.
高温环境样品总DNA直接和间接提取方法的比较   总被引:6,自引:0,他引:6  
分别采用两种环境总DNA直接提取法和一种间接提取法从6种温泉菌席样品中提取总DNA,以DNA粗产物的纯度、能否用于后续PCR扩增及PCR-DGGE(变性梯度凝胶电泳)所反映的微生物多样性为评价指标对两类方法进行比较和评价。研究发现,虽然间接提取法效率低下,但对于高温极端环境中生物量较小的样品,间接法能得到有研究价值的、纯度较高的环境样品总DNA,而直接法得到的DNA量小且不适于PCR扩增操作。在使用这2类方法都能得到可用于研究操作的DNA的情况下,间接提取法能更好的体现环境样品中微生物的多样性。  相似文献   

5.
The bacterial community in partially purified water, which is prepared by ion exchange from tap water and is used in pharmaceutical manufacturing processes, was analyzed by denaturing gradient gel electrophoresis (DGGE). 16S ribosomal DNA fragments, including V6, -7, and -8 regions, were amplified with universal primers and analyzed by DGGE. The bacterial diversity in purified water determined by PCR-DGGE banding patterns was significantly lower than that of other aquatic environments. The bacterial populations with esterase activity sorted by flow cytometry and isolated on soybean casein digest (SCD) and R2A media were also analyzed by DGGE. The dominant bacterium in purified water possessed esterase activity but could not be detected on SCD or R2A media. DNA sequence analysis of the main bands on the DGGE gel revealed that culturable bacteria on these media were Bradyrhizobium sp., Xanthomonas sp., and Stenotrophomonas sp., while the dominant bacterium was not closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods of quality control for pharmaceutical water.  相似文献   

6.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

7.
通过比较4种小鼠粪便细菌总DNA提取方法对基于PCR-DGGE检测的肠道菌群多样性分析的影响,旨在建立适于PCR—DGGE的小鼠肠道微生物宏基因组提取的稳定、经济、快捷的方法。采用SDS裂解法、某国产市售粪便DNA提取试剂盒、改进的化学裂解法、改进的溶菌酶法4种方法提取小鼠粪便细菌总DNA,通过琼脂糖凝胶电泳、紫外分光光度法、细菌16S rRNAV3区PCR扩增结合DGGE对提取结果进行比较分析。SDS裂解法和国产市售试剂盒2种方法提取粪便细菌总DNA均未得到理想结果,另2种方法均能够检测到粪便中20种左右的细菌。改进的化学裂解法和改进的溶菌酶提取法的建立为基于PCR—DGGE进行肠道菌群结构的定量及定性分析提供了可靠的前提基础和实验保障。  相似文献   

8.
Copepods can be associated with different kinds and different numbers of bacteria. This was already shown in the past with culture-dependent microbial methods or microscopy and more recently by using molecular tools. In our present study, we investigated the bacterial community of four frequently occurring copepod species, Acartia sp., Temora longicornis, Centropages sp. and Calanus helgolandicus from Helgoland Roads (North Sea) over a period of 2 years using DGGE (denaturing gradient gel electrophoresis) and subsequent sequencing of 16S-rDNA fragments. To complement the PCR-DGGE analyses, clone libraries of copepod samples from June 2007 to 208 were generated. Based on the DGGE banding patterns of the two years survey, we found no significant differences between the communities of distinct copepod species, nor did we find any seasonality. Overall, we identified 67 phylotypes (>97 % similarity) falling into the bacterial phyla of Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The most abundant phylotypes were affiliated to the Alphaproteobacteria. In comparison with PCR-DGGE and clone libraries, phylotypes of the Gammaproteobacteria dominated the clone libraries, whereas Alphaproteobacteria were most abundant in the PCR-DGGE analyses.  相似文献   

9.
In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed based on the 16S rRNA gene sequence and were evaluated in PCRs performed with genomic DNAs from Burkholderia and non-Burkholderia species as the templates. The primer system used exhibited good specificity and sensitivity for the majority of established species of the genus Burkholderia. DGGE analyses of the PCR products obtained showed that there were sufficient differences in migration behavior to distinguish the majority of the 14 Burkholderia species tested. Sequence analysis of amplicons generated with soil DNA exclusively revealed sequences affiliated with sequences of Burkholderia species, demonstrating that the PCR-DGGE method is suitable for studying the diversity of this genus in natural settings. A PCR-DGGE analysis of the Burkholderia communities in two grassland plots revealed differences in diversity mainly between bulk and rhizosphere soil samples; the communities in the latter samples produced more complex patterns.  相似文献   

10.
The human gastrointestinal (GI) tract harbors a complex community of bacterial cells in the mucosa, lumen, and feces. Since most attention has been focused on bacteria present in feces, knowledge about the mucosa-associated bacterial communities in different parts of the colon is limited. In this study, the bacterial communities in feces and biopsy samples from the ascending, transverse, and descending colons of 10 individuals were analyzed by using a 16S rRNA approach. Flow cytometric analysis indicated that 105 to 106 bacteria were present in the biopsy samples. To visualize the diversity of the predominant and the Lactobacillus group community, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was performed. DGGE analysis and similarity index comparisons demonstrated that the predominant mucosa-associated bacterial community was host specific and uniformly distributed along the colon but significantly different from the fecal community (P < 0.01). The Lactobacillus group-specific profiles were less complex than the profiles reflecting the predominant community. For 6 of the 10 individuals the community of Lactobacillus-like bacteria in the biopsy samples was similar to that in the feces. Amplicons having 99% sequence similarity to the 16S ribosomal DNA of Lactobacillus gasseri were detected in the biopsy samples of nine individuals. No significant differences were observed between healthy and diseased individuals. The observed host-specific DGGE profiles of the mucosa-associated bacterial community in the colon support the hypothesis that host-related factors are involved in the determination of the GI tract microbial community.  相似文献   

11.
The South China Sea, which is one of the largest marginal seas in the world, is predicted to have suitable accumulation conditions and exporting prospects for natural gas hydrate. The aim of this study was to explore the bacterial community composition of deep-sea sediments from such an ecosystem. DNA was extracted by five different methods and used as templates for PCR amplification of the V3 regions of the 16S rRNA gene. Denaturing gradient gel electrophoresis (DGGE) was used to separate the amplified products and analyse the 16S rRNA gene diversity of sediment samples. The results of DGGE indicated that the bacterial community composition is influenced by DNA extraction methods. Sequencing dominant bands demonstrated that the major phylogenetic groups identified by DGGE belong to Proteobacteria, Bacteroidetes, gram-positive bacteria and Archaea. Integrating different DNA extraction procedures are needed to analyse the actual bacterial diversity from environment when the amplification of 16S rRNA gene and construction of representative clone library were adopted.  相似文献   

12.
Monoculture (MC) soybean, a common practice in the Northeast China, causes significant declines in soybean yield and quality. The objective of this study was to evaluate the responses of the soil microbial community and soybean yield to different soybean cropping systems. Three cropping systems were compared, (1) corn-soybean rotation (corn-corn-soybean, CS), (2) MC soybean for 3 years (S3), (3) MC soybean for 9 years (S9). Both bulk and rhizosphere soil samples were collected at three growth stages: two trifoliate (V2), full bloom (R2), and full seed (R6), respectively. Soil microbial DNA was analyzed using polymerase chain reaction (PCR)—denaturing gradient gel electrophoresis (DGGE) to assess changes in composition of bacterial and fungal communities. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant microbial populations. Some prominent differences were observed in bacterial DGGE patterns of amplified 16S rDNA (V3 region) among rhizosphere soils. These major differences included one DGGE band (showing 100% similarity to Arthrobacter sp.) that was enriched at R2 stages in CS and S9, and another band with 97% sequence similarity to an uncultured actinobacterium was detected at R6 stage in CS, and at R2 and R6 stages in S9. The bacterial community from bulk soil showed no significant band change in DGGE patterns among different cropping systems. In fungal DGGE patterns of the amplified 18S rDNA partial fragment, one specific band (showing 98% similarity to Trichoderma viride) occurred in rhizosphere soil of treatment CS at V2 and R6 stages and treatment S9 at R6 stage. None of the above bands were detected in treatment S3. The soybean yields and plant heights from CS and S9 were greater than those from S3. Moreover, catalase activities from CS and S9 at V2 and R2 stages were higher than those tested from S3 at the corresponding times in rhizosphere soil. The present results showed that DGGE patterns were not able to detect significant differences in diversity or evenness among microbial communities, but significant differences were found in the composition of bacterial and fungal community structures. Some distinguished bands from bacterial and fungal DGGE patterns were only enriched in CS and S9 soil, which could potentially play an important role in soybean growth development.  相似文献   

13.
不同栽培时间三叶赤楠根际微生物多样性及其PCR-DGGE分析   总被引:4,自引:0,他引:4  
刘玮  张嘉超  邓光华 《植物研究》2010,30(5):582-587
应用聚合酶链式反应—变性梯度凝胶电泳(PCR-DGGE)研究了不同栽培时间三叶赤楠根际微生物多样性特征。结果表明:采用改进的蛋白酶K-CTAB法提取的三叶赤楠土壤DNA经PCR扩增的产物经DGGE检测后得到的电泳条带清晰且分离效果好,可以明显反映出三叶赤楠生长过程中土壤微生物多样性的变化。栽培时间对三叶赤楠根际微生物特征有很大影响:随着栽培时间增加,土壤微生物多样性增加,在第4年多样性指数达到最高值2.741,第8年时多样性指数降为1.378。不同栽培时间三叶赤楠根际微生物类群组成有所变化。根际微生物特征可以作为盆景换盆的一个指导因素,三叶赤楠盆景的换盆在其生长4~6年时进行可能最为合适,此时三叶赤楠根际微生物的多样性最为丰富,进行换盆会加快其根际微生态系统的建成。  相似文献   

14.
刘梅  赵秀侠  詹婧  高毅  阳贵德  孙庆业 《生态学报》2011,31(22):6886-6895
生物土壤结皮是生态系统原生演替过程中的一个早期阶段,在铜陵铜尾矿废弃地自然生态恢复过程中生物土壤结皮在尾矿废弃地表面广泛分布.以生长在铜陵杨山冲和铜官山2处铜尾矿废弃地的生物土壤结皮为研究对象,运用常规培养方法和变性梯度凝胶电泳技术(PCR-DGGE)对不同群落生物土壤结皮中的蓝藻多样性及优势类群进行研究.结果表明2种研究方法所获得的蓝藻种类组成具有明显差异.显微观察结果表明常规培养试验中主要蓝藻类群为微囊藻属(Microcystis)、色球藻属(Chroococcus)、颤藻属(Oscillatoria)、念珠藻属(Nostoc)和浮鞘丝藻属(Planktolyngbya),其中优势种类主要为铜绿微囊藻(Microcystis aeruginosa)、断裂颤藻(Oscillatoria fracta)和细浮鞘丝藻(Planktolyngbya subtilis);提取样品中微生物总DNA,对蓝藻16SrRNA进行PCR-DGGE分析,回收DGGE图谱中24个条带进行测序分析,结果显示,所有序列与GenBank数据库中的近缘蓝藻的相似性系数均在93%以上,其中优势蓝藻类群主要隶属于微鞘藻属(Microcoleus)和细鞘丝藻属(Leptolyngbya),裸地(YL)处和木贼群落下尾矿表面(YM)的生物土壤结皮中优势蓝藻类群主要为微鞘藻属,而黄色真藓-藻类混合结皮(YT)和白茅群落( YB,TG)下的生物土壤结皮中的优势类群主要隶属于细鞘丝藻属.  相似文献   

15.
Characterization of Microbial Communities in Gas Industry Pipelines   总被引:2,自引:0,他引:2       下载免费PDF全文
Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans, which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales; order III, Methanomicrobiales; and order IV, Methanosarcinales. Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion.  相似文献   

16.
The vaginal bacterial microbiota of 19 premenopausal women was examined by PCR-denaturing gradient gel electrophoresis (DGGE) and sequencing of the V2-V3 region of the 16S rRNA gene. Ten of the women were studied further to investigate the effect and persistence of vaginally inserted capsules containing viable lactobacilli. PCR-DGGE indicated that most subjects had a microbiota represented by one to three dominant DNA fragments. Analysis of these fragments revealed that 79% of the women possessed sequences with high levels of similarity to Lactobacillus species sequences. Sequences homologous to Lactobacillus iners sequences were the most common and were detected in 42% of the women tested. Alteration of the vaginal microbiota could be detected by PCR-DGGE in several women after the instillation of lactobacilli. Additionally, randomly amplified polymorphic DNA analysis of lactobacilli isolated from selective media demonstrated that the exogenous strains could be detected for up to 21 days in some subjects. This study demonstrates that non-culture-based techniques, such as PCR-DGGE, are useful adjuncts for studies of the vaginal microbiota.  相似文献   

17.
We investigated the microbial community structure and population size of arboreal soils—including canopy and bromeliad epiphytic leaf-tank soils—and ground soils in a tropical lowland rainforest in Costa Rica using molecular and cultivation methods. PCR-DGGE analysis of 16S rRNA and 18S rRNA gene fragments and quantitative real-time PCR were applied to survey the bacteria, ammonia-oxidizing bacteria (AOB), and fungi. Bacteria from epiphytic tank soils were isolated and identified. Bacillaceae, Pseudomonadaceae and Micrococcaceae were the most abundant families. According to cluster analysis of DGGE fingerprints a significant difference among the three soil types was evident for bacterial communities. In addition, the microbial communities of canopy and tank soils clustered apart from ground soils. The fungal and AOB communities were diverse but non-specific for the soil types analyzed.  相似文献   

18.
The objective of this work was to determine the shifts in the PCR-DGGE profiles of bacterial communities associated with the rhizosphere soil of ginseng at varying age levels. Differences in the dominance of intense DNA bands in the DGGE profile was observed over the age of the plants indicating the fluctuation in the microbial community structure. The bacterial orders of actinomycetales of Actinobacteria and Spingomonadales and Rhizobiales of α-Proteobacteria were predominant in the ginseng soil.  相似文献   

19.
A molecular method for profiling of fungal communities in soil was applied in experiments in soil microcosms, with two objectives, (1) to assess the persistence of two selected fungal species in soil, and (2) to analyze the response of the natural fungal community to a spill of sulphurous petrol in the same soil. To achieve the aims, two soil DNA extraction methods, one originally designed for the direct extraction of bacterial community DNA and the other one aimed to obtain fungal DNA, were tested for their efficiency in recovering DNA of fungal origin from soil. Both methods allowed for the efficient extraction of DNA from introduced Trichoderma harzianum spores as well as Arthrobotrys oligospora mycelial fragments, at comparable rates. Several PCR amplification systems based on primers specific for fungal 18S ribosomal RNA genes were tested to design strategies for the assessment of fungal communities in soil. The PCR systems produced amplicons of expected size with DNA of most fungi studied, which included members of the Ascomycetes, Basidiomycetes, Zygomycetes and Chytridiomycetes. On the other hand, the 18S rRNA genes of Oomycetes (including key plant pathogens) were poorly amplified. Plant (Solanum tuberosum), nematode (Meloidogyne sp.) and bacterial DNA was not amplified. For studies of soil fungal communities, a nested PCR approach was selected, in which the first PCR provided the required specificity for fungi, whereas the second (nested) PCR served to produce amplicons separable on denaturing gradient gels. Denaturing gradient gel electrophoresis (DGGE) allowed the resolution of mixtures of PCR products of several different fungi, as well as products resulting from mixed-template amplifications, into distinct banding patterns. The persistence of fungal species in soil was assessed using T. harzianum spores and A. oligospora hyphal fragments added to silt loam soil microcosms. Using PCR-DGGE, these fungi were detectable for about 14 days and 2 months, respectively. Both singly-inoculated soils and soils that had received mixed inoculants revealed, next to bands resulting from indigenous fungi, the expected bands in the DGGE profiles. The A. oligospora specific amplicon, by virtue of its unique migration in the denaturing gradient, was well detectable, whereas the T. harzianum specific product comigrated with products from indigenous fungi. PCR-DGGE analysis of DNA obtained from the silt loam soil treated with dibenzothiophene-containing petrol showed the progressive selection of specific fungal bands over time, whereas this selection was not observed in untreated soil microcosms. Cloning of individual molecules from the selected bands and analysis of their sequences revealed a complex of targets which clustered with the 18S rDNA sequences of the closely-related species Nectria haematococca, N. ochroleuca and Fusarium solani. Fungal isolates obtained from the treated soil on PDA plates were identified as Trichoderma sp., whereas those on Comada agar fell into the Cylindrocarpon group (anamorph of Nectria spp).  相似文献   

20.
采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,研究了5种高温和中温白酒大曲细菌群落结构,通过优势条带切胶鉴定确定了大曲中优势细菌种属信息。结果表明,Weissella cibaria、Lactobacillus helveticus、L.fermentum、L.panis等乳酸菌普遍存在于5种大曲中,Ther-moactinomyces sanguinis仅存在于高温曲酱曲中,同时DGGE检测到了传统方法未能分离鉴定的Staphylococcus xylosus、Klebsiella oxytoca。不同工艺大曲细菌群落结构存在明显差异,随着制曲温度的升高,大曲细菌多样性指数有下降趋势。PCR-DGGE技术是一种能够快速有效地研究白酒大曲细菌群落结构的技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号