共查询到20条相似文献,搜索用时 0 毫秒
1.
del Peso L Gonzalez VM Inohara N Ellis RE Núñez G 《The Journal of biological chemistry》2000,275(35):27205-27211
In the nematode Caenorhabditis elegans, the apoptotic machinery is composed of four basic elements: the caspase CED-3, the Apaf-1 homologue CED-4, and the Bcl-2 family members CED-9 and EGL-1. The ced-9(n1950) gain-of-function mutation prevents most, if not all, somatic cell deaths in C. elegans. It encodes a CED-9 protein with a glycine-to-glutamate substitution at position 169, which is located within the highly conserved Bcl-2 homology 1 domain. We performed biochemical analyses with the CED-9G169E protein to gain insight into the mechanism of programmed cell death. We find that CED-9G169E retains the ability to bind both EGL-1 and CED-4, although its affinity for EGL-1 is reduced. In contrast to the behavior of wild-type CED-9, the interaction between CED-9G169E and CED-4 is not disrupted by expression of EGL-1. Furthermore, CED-4 and CED-9G169E co-localizes with EGL-1 to the mitochondria in mammalian cells, and expression of EGL-1 does not induce translocation of CED-4 to the cytosol. Finally, the ability of EGL-1 to promote apoptosis is impaired by the replacement of wild-type CED-9 with CED-9G169E, and this effect is correlated with the inability of EGL-1 to induce the displacement of CED-4 from the CED-9.CED-4 complex. These studies suggest that the release of CED-4 from the CED-9.CED-4 complex is a necessary step for induction of programmed cell death in C. elegans. 相似文献
2.
Ottilie S Wang Y Banks S Chang J Vigna NJ Weeks S Armstrong RC Fritz LC Oltersdorf T 《Cell death and differentiation》1997,4(7):526-533
The genes ced-3, ced-4 and ced-9 are central components in the cell death pathway of the nematode C. elegans. Ced-9, which functions to inhibit cell death, is homologous to the Bcl-2 family of mammalian anti-apoptotic genes. The ced-3 gene encodes a protein homologous to the caspases, a family of cysteine proteases involved in the execution of programmed cell death. It has recently been demonstrated that CED-4, an inducer of apoptosis for which no mammalian equivalent has been reported, can interact with CED-9 and Bcl-x(L). Here we confirm that CED-9 and CED-4 interact and using a series of deletion mutants, demonstrate that only short N-terminal deletions are tolerated in each molecule without loss-of-interaction. Two loss-of-function point mutations in different regions of CED-4 also lead to a significant loss of interaction suggesting further that the relevant interaction domains are not short linear sequences, but rather, are formed by more complex structural determinants in each molecule. Furthermore, we demonstrate that CED-4 not only interacts with Bcl-x(L) but also with its homologue, Bcl-2, and that the unstructured loop region present in Bcl-x(L) and Bcl-2 can regulate the CED-4 interaction. Lastly, we show that a BH3 peptide that can inhibit Bcl-2 family interactions also inhibits the interaction between Bcl-x(L) and CED-4. 相似文献
3.
Engulfment of apoptotic cells in Caenorhabditis elegans is controlled by two partially redundant pathways. Mutations in genes in one of these pathways, defined by the genes ced-2, ced-5 and ced-10, result in defects both in the engulfment of dying cells and in the migrations of the two distal tip cells of the developing gonad. Here we find that ced-2 and ced-10 encode proteins similar to the human adaptor protein CrkII and the human GTPase Rac, respectively. Together with the previous observation that ced-5 encodes a protein similar to human DOCK180, our findings define a signalling pathway that controls phagocytosis and cell migration. We provide evidence that CED-2 and CED-10 function in engulfing rather than dying cells to control the phagocytosis of cell corpses, that CED-2 and CED-5 physically interact, and that ced-10 probably functions downstream of ced-2 and ced-5. We propose that CED-2/CrkII and CED-5/DOCK180 function to activate CED-10/Rac in a GTPase signalling pathway that controls the polarized extension of cell surfaces. 相似文献
4.
Jabbour AM Ho PK Puryer MA Ashley DM Ekert PG Hawkins CJ 《Cell death and differentiation》2004,11(12):1309-1316
A genetically defined pathway orchestrates the removal of 131 of the 1090 somatic cells generated during the development of the hermaphrodite nematode Caenorhabditis elegans. Regulation of apoptosis is highly evolutionarily conserved and the nematode cell death pathway is a valuable model for studying mammalian apoptotic pathways, the dysregulation of which can contribute to numerous diseases. The nematode caspase CED-3 is ultimately responsible for the destruction of worm cells in response to apoptotic signals, but it must first be activated by CED-4. CED-9 inhibits programmed cell death and considerable data have demonstrated that CED-9 can directly bind and inhibit CED-4. However, it has been suggested that CED-9 may also directly inhibit CED-3. In this study, we used a yeast-based system and biochemical approaches to explore this second potential mechanism of action. While we confirmed the ability of CED-9 to inhibit CED-4, our data argue that CED-9 can not directly inhibit CED-3. 相似文献
5.
6.
Genetic studies of the nematode Caenorhabditis elegans have uncovered four genes, egl-1 (BH3 only), ced-9 (Bcl-2 related), ced-4 (apoptosis protease activating factor-1), and ced-3 (caspase), which function in a linear pathway to promote developmental cell death in this organism. While this core pathway functions in many cells, recent studies suggest that additional regulators, acting on or in lieu of these core genes, can promote or inhibit the onset of cell death. Here, we discuss the evidence for these noncanonical mechanisms of C. elegans cell death control. We consider novel modes for regulating the core apoptosis genes, and describe a newly identified cell death pathway independent of all known C. elegans cell death genes. The existence of these noncanonical cell death programs suggests that organisms have evolved multiple ways to ensure appropriate cellular demise during development. 相似文献
7.
Monica Driscoll 《Developmental neurobiology》1992,23(9):1327-1351
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insightinto the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. © 1992 John Wiley & Sons, Inc. 相似文献
8.
The rapid engulfment of apoptotic cells is a specialized innate immune response used by organisms to remove apoptotic cells. In mammals, several receptors that recognize apoptotic cells have been identified; molecules that transduce signals from these receptors to downstream cytoskeleton molecules have not been found, however [1] [2] [3]. Our previous analysis of the engulfment gene ced-6 in Caenorhabditis elegans has suggested that CED-6 is an adaptor protein that participates in a signal transduction pathway that mediates the specific recognition and engulfment of apoptotic cells [1]. Here, we describe our isolation and characterization of a human cDNA encoding a protein, hCED-6, with strong sequence similarity to C. elegans CED-6. As is the case with the worm protein, hCED-6 contains a phosphotyrosine-binding (PTB) domain and potential Src-homology domain 3 (SH3) binding sites. Both CED-6 and hCED-6 contain a predicted coiled-coil domain in the middle region. The hCED-6 protein lacks the extended carboxyl terminus found in worm CED-6; this carboxy-terminal extension appears not to be essential for CED-6 function in C. elegans, however. Overexpression of hCED-6 rescues the engulfment defect of ced-6 mutants in C. elegans significantly, suggesting that hCED-6 is a functional homologue of C. elegans CED-6. Human ced-6 is expressed widely in most human tissues. Thus, CED-6, and the CED-6 signal transduction pathway, might be conserved from C. elegans to humans and are present in most, if not all, human tissues. 相似文献
9.
M Driscoll 《Journal of neurobiology》1992,23(9):1327-1351
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death, which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insight into the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. 相似文献
10.
During the development of Caenorhabditis elegans, through cell divisions, a total of exactly 1090 cells are generated, 131 of which undergo programmed cell death (PCD) to result in an adult organism comprising 959 cells. Of those 131, exactly 113 undergo PCD during embryogenesis, subdivided across the cell lineages in the following fashion: 98 for AB lineage; 14 for MS lineage; and 1 for C lineage. Is there a law underlying these numbers, and if there is, what could it be? Here we wish to show that the count of the cells undergoing PCD complies with the cipher laws related to the algorithms of Shor and of Grover. 相似文献
11.
《Autophagy》2013,9(12):1975-1982
The physiological relationship between autophagy and programmed cell death during C. elegans development is poorly understood. In C. elegans, 131 somatic cells and a large number of germline cells undergo programmed cell death. Autophagy genes function in the removal of somatic cell corpses during embryogenesis. Here we demonstrated that autophagy activity participates in germ-cell death induced by genotoxic stress. Upon γ ray treatment, fewer germline cells execute the death program in autophagy mutants. Autophagy also contributes to physiological germ-cell death and post-embryonic cell death in ventral cord neurons when ced-3 caspase activity is partially compromised. Our study reveals that autophagy activity contributes to programmed cell death during C. elegans development. 相似文献
12.
Autophagy is the main process for bulk protein and organelle recycling in cells under extracellular or intracellular stress. Deregulation of autophagy has been associated with pathological conditions such as cancer, muscular disorders and neurodegeneration. Necrotic cell death underlies extensive neuronal loss in acute neurodegenerative episodes such as ischemic stroke. We find that excessive autophagosome formation is induced early during necrotic cell death in C. elegans. In addition, autophagy is required for necrotic cell death. Impairment of autophagy by genetic inactivation of autophagy genes or by pharmacological treatment suppresses necrosis. Autophagy synergizes with lysosomal catabolic mechanisms to facilitate cell death. Our findings demonstrate that autophagy contributes to cellular destruction during necrosis. Thus, interfering with the autophagic process may protect neurons against necrotic damage in humans. 相似文献
13.
14.
Pinan-Lucarre B Gabel CV Reina CP Hulme SE Shevkoplyas SS Slone RD Xue J Qiao Y Weisberg S Roodhouse K Sun L Whitesides GM Samuel A Driscoll M 《PLoS biology》2012,10(5):e1001331
A critical accomplishment in the rapidly developing field of regenerative medicine will be the ability to foster repair of neurons severed by injury, disease, or microsurgery. In C. elegans, individual visualized axons can be laser-cut in vivo and neuronal responses to damage can be monitored to decipher genetic requirements for regeneration. With an initial interest in how local environments manage cellular debris, we performed femtosecond laser axotomies in genetic backgrounds lacking cell death gene activities. Unexpectedly, we found that the CED-3 caspase, well known as the core apoptotic cell death executioner, acts in early responses to neuronal injury to promote rapid regeneration of dissociated axons. In ced-3 mutants, initial regenerative outgrowth dynamics are impaired and axon repair through reconnection of the two dissociated ends is delayed. The CED-3 activator, CED-4/Apaf-1, similarly promotes regeneration, but the upstream regulators of apoptosis CED-9/Bcl2 and BH3-domain proteins EGL-1 and CED-13 are not essential. Thus, a novel regulatory mechanism must be utilized to activate core apoptotic proteins for neuronal repair. Since calcium plays a conserved modulatory role in regeneration, we hypothesized calcium might play a critical regulatory role in the CED-3/CED-4 repair pathway. We used the calcium reporter cameleon to track in vivo calcium fluxes in the axotomized neuron. We show that when the endoplasmic reticulum calcium-storing chaperone calreticulin, CRT-1, is deleted, both calcium dynamics and initial regenerative outgrowth are impaired. Genetic data suggest that CED-3, CED-4, and CRT-1 act in the same pathway to promote early events in regeneration and that CED-3 might act downstream of CRT-1, but upstream of the conserved DLK-1 kinase implicated in regeneration across species. This study documents reconstructive roles for proteins known to orchestrate apoptotic death and links previously unconnected observations in the vertebrate literature to suggest a similar pathway may be conserved in higher organisms. 相似文献
15.
Banerjee H Hawkins Z Johnson T Eley S Alikhan A Mcdaniel M Singh I Raymond J 《Plasmid》2003,49(1):30-33
The rapid engulfment of apoptotic cells is a specialized innate immune response used by organisms to remove apoptotic cells. In mammals, several receptors that recognize apoptotic cells have been identified. Previous analysis of the engulfment gene ced-6 in Caenorhabditis elegans (C. elegans) has suggested that CED-6 is an adapter protein that participates in signal transduction pathway that mediates the specific recognition and engulfment of apoptotic cells. Here, we describe our isolation and partial characterization of a mouse cDNA, which is like an orthologue of C. elegans CED-6. PCR screening of mouse cDNA pool with primers designed from the C. elegans CED-6 cDNA sequence resulted in about 300 bp PCR product which was partially sequenced and then screened to a mouse full-length cDNA library. Thus in this study we report the identification of a novel C. elegans CED-6-like orthologue in mouse, which has probable apoptotic like function. 相似文献
16.
L. I. Láscarez-Lagunas C. G. Silva-García T. D. Dinkova R. E. Navarro 《Molecular and cellular biology》2014,34(13):2499-2516
Apoptosis is an important mechanism for maintaining germ line health. In Caenorhabditis elegans, germ cell apoptosis occurs under normal conditions to sustain gonad homeostasis and oocyte quality. Under stress, germ cell apoptosis can be triggered via different pathways, including the following: (i) the CEP-1/p53 pathway, which induces germ cell apoptosis when animals are exposed to DNA damage; (ii) the mitogen-activated protein kinase kinase (MAPKK) pathway, which triggers germ cell apoptosis when animals are exposed to heat shock, oxidative stress, or osmotic stress; and (iii) an unknown mechanism that triggers germ cell apoptosis during starvation. Here, we address how starvation induces germ cell apoptosis. Using polysomal profiling, we found that starvation for 6 h reduces the translationally active ribosomes, which differentially affect the mRNAs of the core apoptotic machinery and some of its regulators. During starvation, lin-35/Rb mRNA increases its expression, resulting in the accumulation of this protein. As a consequence, LIN-35 downregulates the expression of the antiapoptotic gene ced-9/Bcl-2. We observed that the reduced translation of ced-9/Bcl-2 mRNA during food deprivation together with its downregulation drastically affects its protein accumulation. We propose that CED-9/Bcl-2 downregulation via LIN-35/Rb triggers germ cell apoptosis in C. elegans in response to starvation. 相似文献
17.
Prodomain-dependent tissue targeting of an ADAMTS protease controls cell migration in Caenorhabditis elegans
下载免费PDF全文

Members of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted proteins play important roles in animal development and pathogenesis. However, the lack of in vivo models has hampered elucidation of the mechanisms by which these enzymes are recruited to specific target tissues and the timing of their activation during development. Using transgenic worms and primary cell cultures, here we show that MIG-17, an ADAMTS family protein required for gonadal leader cell migration in Caenorhabditis elegans, is recruited to the gonadal basement membrane in a prodomain-dependent manner. The activation of MIG-17 to control leader cell migration requires prodomain removal, which is suggested to occur autocatalytically in vitro. Although the prodomains of ADAMTS proteases have been implicated in maintaining enzymatic latency, polypeptide folding and secretion, our findings demonstrate that the prodomain has an unexpected function in tissue-specific targeting of MIG-17; this prodomain targeting function may be shared by other ADAMTSs including those in vertebrates. 相似文献
18.
Programmed cell death (apoptosis) is essential for the development and homeostasis of metazoans. The central step in the execution of programmed cell death is the activation of caspases. In C. elegans, the core cell death regulators EGL-1(a BH3 domain-containing protein), CED-9 (Bcl-2), and CED-4 (Apaf-1) act in an inhibitory cascade to activate the CED-3 caspase. Here we have identified an additional component eif-3.K (eukaryotic translation initiation factor 3 subunit k) that acts upstream of ced-3 to promote programmed cell death. The loss of eif-3.K reduced cell deaths in both somatic and germ cells, whereas the overexpression of eif-3.K resulted in a slight but significant increase in cell death. Using a cell-specific promoter, we show that eif-3.K promotes cell death in a cell-autonomous manner. In addition, the loss of eif-3.K significantly suppressed cell death-induced through the overexpression of ced-4, but not ced-3, indicating a distinct requirement for eif-3.K in apoptosis. Reciprocally, a loss of ced-3 suppressed cell death induced by the overexpression of eif-3.K. These results indicate that eif-3.K requires ced-3 to promote programmed cell death and that eif-3.K acts upstream of ced-3 to promote this process. The EIF-3.K protein is ubiquitously expressed in embryos and larvae and localizes to the cytoplasm. A structure-function analysis revealed that the 61 amino acid long WH domain of EIF-3.K, potentially involved in protein-DNA/RNA interactions, is both necessary and sufficient for the cell death-promoting activity of EIF-3.K. Because human eIF3k was able to partially substitute for C. elegans eif-3.K in the promotion of cell death, this WH domain-dependent EIF-3.K-mediated cell death process has potentially been conserved throughout evolution. 相似文献
19.
20.
Apoptosis, cell death characterized by stereotypical morphological features, requires caspase proteases. Nonapoptotic, caspase-independent cell death pathways have been postulated; however, little is known about their molecular constituents or in vivo functions. Here, we show that death of the Caenorhabditis elegans linker cell during development is independent of the ced-3 caspase and all known cell death genes. The linker cell employs a cell-autonomous death program, and a previously undescribed engulfment program is required for its clearance. Dying linker cells display nonapoptotic features, including nuclear crenellation, absence of chromatin condensation, organelle swelling, and accumulation of cytoplasmic membrane-bound structures. Similar features are seen during developmental death of neurons in the vertebrate spinal cord and ciliary ganglia. Linker cell death is controlled by the microRNA let-7 and Zn-finger protein LIN-29, components of the C. elegans developmental timing pathway. We propose that the program executing linker cell death is conserved and used during vertebrate development. 相似文献