首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Faithful chromosome segregation during meiosis I depends on the establishment of a crossover between homologous chromosomes. This requires induction of DNA double-strand breaks (DSBs), alignment of homologs, homolog association by synapsis, and repair of DSBs via homologous recombination. The success of these events requires coordination between chromosomal events and meiotic progression. The conserved SUN/KASH nuclear envelope bridge establishes transient linkages between chromosome ends and cytoskeletal forces during meiosis. In Caenorhabditis elegans, this bridge is essential for bringing homologs together and preventing nonhomologous synapsis. Chromosome movement takes place during synapsis and recombination. Concomitant with the onset of chromosome movement, SUN-1 clusters at chromosome ends associated with the nuclear envelope, and it is phosphorylated in a chk-2- and plk-2-dependent manner. Identification of all SUN-1 phosphomodifications at its nuclear N terminus allowed us to address their role in prophase I. Failures in recombination and synapsis led to persistent phosphorylations, which are required to elicit a delay in progression. Unfinished meiotic tasks elicited sustained recruitment of PLK-2 to chromosome ends in a SUN-1 phosphorylation–dependent manner that is required for continued chromosome movement and characteristic of a zygotene arrest. Furthermore, SUN-1 phosphorylation supported efficient synapsis. We propose that signals emanating from a failure to successfully finish meiotic tasks are integrated at the nuclear periphery to regulate chromosome end–led movement and meiotic progression. The single unsynapsed X chromosome in male meiosis is precluded from inducing a progression delay, and we found it was devoid of a population of phosphorylated SUN-1. This suggests that SUN-1 phosphorylation is critical to delaying meiosis in response to perturbed synapsis. SUN-1 may be an integral part of a checkpoint system to monitor establishment of the obligate crossover, inducible only in leptotene/zygotene. Unrepaired DSBs and unsynapsed chromosomes maintain this checkpoint, but a crossover intermediate is necessary to shut it down.  相似文献   

2.
A central event in sexual reproduction is the reduction in chromosome number that occurs at the meiosis I division. Most eukaryotes rely on crossing over between homologs, and the resulting chiasmata, to direct meiosis I chromosome segregation, yet make very few crossovers per chromosome pair. This indicates that meiotic recombination must be tightly regulated to ensure that each chromosome pair enjoys the crossover necessary to ensure correct segregation. Here, we investigate control of meiotic crossing over in Caenorhabditis elegans, which averages only one crossover per chromosome pair per meiosis, by constructing genetic maps of end-to-end fusions of whole chromosomes. Fusion of chromosomes removes the requirement for a crossover in each component chromosome segment and thereby reveals a propensity to restrict the number of crossovers such that pairs of fusion chromosomes composed of two or even three whole chromosomes enjoy but a single crossover in the majority of meioses. This regulation can operate over physical distances encompassing half the genome. The meiotic behavior of heterozygous fusion chromosomes further suggests that continuous meiotic chromosome axes, or structures that depend on properly assembled axes, may be important for crossover regulation.  相似文献   

3.
Meiosis is a specialized type of cell division leading to the production of gametes. During meiotic prophase I, homologous chromosomes interact with each other and form bivalents (pairs of homologous chromosomes). Three major meiotic processes--chromosome pairing, synapsis and recombination--are involved in the formation of bivalents. Many recent reports have uncovered complex networks of interactions between these processes. Chromosome pairing is largely dependent on the initiation and progression of recombination in fungi, mammals and plants, but not in Caenorhabditis elegans or Drosophila. Synapsis and recombination are also tightly linked. Understanding the coordination between chromosome pairing, synapsis and recombination lends insight into many poorly explained aspects of meiosis, such as the nature of chromosome homology recognition.  相似文献   

4.
Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing and/or recombination intermediates to slow their progression and ensure their fidelity during meiotic prophase.  相似文献   

5.
Reduction in ploidy to generate haploid gametes during sexual reproduction is accomplished by the specialized cell division program of meiosis. Pairing between homologous chromosomes and assembly of the synaptonemal complex at their interface (synapsis) represent intermediate steps in the meiotic program that are essential to form crossover recombination-based linkages between homologs, which in turn enable segregation of the homologs to opposite poles at the meiosis I division. Here, we challenge the mechanisms of pairing and synapsis during C. elegans meiosis by disrupting the normal 1∶1 correspondence between homologs through karyotype manipulation. Using a combination of cytological tools, including S-phase labeling to specifically identify X chromosome territories in highly synchronous cohorts of nuclei and 3D rendering to visualize meiotic chromosome structures and organization, our analysis of trisomic (triplo-X) and polyploid meiosis provides insight into the principles governing pairing and synapsis and how the meiotic program is “wired” to maximize successful sexual reproduction. We show that chromosomes sort into homologous groups regardless of chromosome number, then preferentially achieve pairwise synapsis during a period of active chromosome mobilization. Further, comparisons of synapsis configurations in triplo-X germ cells that are proficient or defective for initiating recombination suggest a role for recombination in restricting chromosomal interactions to a pairwise state. Increased numbers of homologs prolong markers of the chromosome mobilization phase and/or boost germline apoptosis, consistent with triggering quality control mechanisms that promote resolution of synapsis problems and/or cull meiocytes containing synapsis defects. However, we also uncover evidence for the existence of mechanisms that “mask” defects, thus allowing resumption of prophase progression and survival of germ cells despite some asynapsis. We propose that coupling of saturable masking mechanisms with stringent quality controls maximizes meiotic success by making progression and survival dependent on achieving a level of synapsis sufficient for crossover formation without requiring perfect synapsis.  相似文献   

6.
We have investigated the role of pairing centers (PCs), cis-acting sites required for accurate segregation of homologous chromosomes during meiosis in C. elegans. We find that these sites play two distinct roles that contribute to proper segregation. Chromosomes lacking PCs usually fail to synapse and also lack a synapsis-independent stabilization activity. The presence of a PC on just one copy of a chromosome pair promotes synapsis but does not support synapsis-independent pairing stabilization, indicating that these functions are separable. Once initiated, synapsis is highly processive, even between nonhomologous chromosomes of disparate lengths, elucidating how translocations suppress meiotic recombination in C. elegans. These findings suggest a multistep pathway for chromosome synapsis in which PCs impart selectivity and efficiency through a "kinetic proofreading" mechanism. We speculate that concentration of these activities at one region per chromosome may have coevolved with the loss of a point centromere to safeguard karyotype stability.  相似文献   

7.
During meiosis, accurate chromosome segregation relies on the proper interaction between homologous chromosomes, including synapsis and recombination. The meiotic recombination checkpoint is a quality control mechanism that monitors those crucial events. In response to defects in synapsis and/or recombination, this checkpoint blocks or delays progression of meiosis, preventing the formation of aberrant gametes. Meiotic recombination occurs in the context of chromatin and histone modifications, which play crucial roles in the maintenance of genomic integrity. Here, we unveil the role of Dot1-dependent histone H3 methylation at lysine 79 (H3K79me) in this meiotic surveillance mechanism. We demonstrate that the meiotic checkpoint function of Dot1 relies on H3K79me because, like the dot1 deletion, H3-K79A or H3-K79R mutations suppress the checkpoint-imposed meiotic delay of a synapsis-defective zip1 mutant. Moreover, by genetically manipulating Dot1 catalytic activity, we find that the status of H3K79me modulates the meiotic checkpoint response. We also define the phosphorylation events involving activation of the meiotic checkpoint effector Mek1 kinase. Dot1 is required for Mek1 autophosphorylation, but not for its Mec1/Tel1-dependent phosphorylation. Dot1-dependent H3K79me also promotes Hop1 activation and its proper distribution along zip1 meiotic chromosomes, at least in part, by regulating Pch2 localization. Furthermore, HOP1 overexpression bypasses the Dot1 requirement for checkpoint activation. We propose that chromatin remodeling resulting from unrepaired meiotic DSBs and/or faulty interhomolog interactions allows Dot1-mediated H3K79-me to exclude Pch2 from the chromosomes, thus driving localization of Hop1 along chromosome axes and enabling Mek1 full activation to trigger downstream responses, such as meiotic arrest.  相似文献   

8.
In organisms with chiasmatic meiosis two different relationships have been described between crossing over and synapsis: in one group of organisms synapsis depends on the initiation of meiotic recombination while in the other group it is independent of this initiation. These patterns have been observed mainly in organisms where all meiotic bivalents in the set have similar behaviors. In some heteropteran insects a pair of chromosomes named m chromosomes is known to behave differently from autosomes regarding synapsis and recombination. Here we used immunodetection of a synaptonemal complex component and acid-fixed squashes to investigate the conduct of the small m chromosome pair during the male meiosis in the coreid bug Holhymenia rubiginosa. We found that the m chromosomes form a synaptonemal complex during pachytene, but they are not attached by a chiasma in diakinesis. On the other hand, the autosomal bivalents synapse and recombine regularly. The co-existence of these variant chromosome behaviors during meiosis I add further evidence to the absence of unique patterns regarding the interdependence of synapsis and recombination.  相似文献   

9.
The production of haploid gametes from diploid germ cells requires two rounds of meiotic chromosome segregation after one round of replication. Accurate meiotic chromosome segregation involves the remodeling of each pair of homologous chromosomes around the site of crossover into a highly condensed and ordered structure. We showed that condensin, the protein complex needed for mitotic chromosome compaction, restructures chromosomes during meiosis in Caenorhabditis elegans. In particular, condensin promotes both meiotic chromosome condensation after crossover recombination and the remodeling of sister chromatids. Condensin helps resolve cohesin-independent linkages between sister chromatids and alleviates recombination-independent linkages between homologues. The safeguarding of chromosome resolution by condensin permits chromosome segregation and is crucial for the formation of discrete, individualized bivalent chromosomes.  相似文献   

10.
The RecA homolog, RAD51, performs a central role in catalyzing the DNA strand exchange event of meiotic recombination. During meiosis, RAD51 complexes develop on pairing chromosomes and then most disappear upon synapsis. In the maize meiotic mutant desynaptic2 (dsy2), homologous chromosome pairing and recombination are reduced by ~70% in male meiosis. Fluorescent in situ hybridization studies demonstrate that a normal telomere bouquet develops but the pairing of a representative gene locus is still only 25%. Chromosome synapsis is aberrant as exemplified by unsynapsed regions of the chromosomes. In the mutant, we observed unusual RAD51 structures during chromosome pairing. Instead of spherical single and double RAD51 structures, we saw long thin filaments that extended along or around a single chromosome or stretched between two widely separated chromosomes. Mapping with simple sequence repeat (SSR) markers places the dsy2 gene to near the centromere on chromosome 5, therefore it is not an allele of rad51. Thus, the normal dsy2 gene product is required for both homologous chromosome synapsis and proper RAD51 filament behavior when chromosomes pair. Edited by: P. Moens  相似文献   

11.
Xu J  Sun X  Jing Y  Wang M  Liu K  Jian Y  Yang M  Cheng Z  Yang C 《Cell research》2012,22(5):886-902
During meiotic cell division, proper chromosome synapsis and accurate repair of DNA double strand breaks (DSBs) are required to maintain genomic integrity, loss of which leads to apoptosis or meiotic defects. The mechanisms underlying meiotic chromosome synapsis, DSB repair and apoptosis are not fully understood. Here, we report that the chromodomain-containing protein MRG-1 is an important factor for genomic integrity in meiosis in Caenorhabditis elegans. Loss of mrg-1 function resulted in a significant increase in germ cell apoptosis that was partially inhibited by mutations affecting DNA damage checkpoint genes. Consistently, mrg-1 mutant germ lines exhibited SPO-11-generated DSBs and elevated exogenous DNA damage-induced chromosome fragmentation at diakinesis. In addition, the excessive apoptosis in mrg-1 mutants was partially suppressed by loss of the synapsis checkpoint gene pch-2, and a significant number of meiotic nuclei accumulated at the leptotene/zygotene stages with an elevated level of H3K9me2 on the chromatin, which was similarly observed in mutants deficient in the synaptonemal complex, suggesting that the proper progression of chromosome synapsis is likely impaired in the absence of mrg-1. Altogether, these findings suggest that MRG-1 is critical for genomic integrity by promoting meiotic DSB repair and synapsis progression in meiosis.  相似文献   

12.
Nabeshima K  Villeneuve AM  Hillers KJ 《Genetics》2004,168(3):1275-1292
Most sexually reproducing organisms depend on the regulated formation of crossovers, and the consequent chiasmata, to accomplish successful segregation of homologous chromosomes at the meiosis I division. A robust, chromosome-wide crossover control system limits chromosome pairs to one crossover in most meioses in the nematode Caenorhabditis elegans; this system has been proposed to rely on structural integrity of meiotic chromosome axes. Here, we test this hypothesis using a mutant, him-3(me80), that assembles reduced levels of meiosis-specific axis component HIM-3 along cohesin-containing chromosome axes. Whereas pairing, synapsis, and crossing over are eliminated when HIM-3 is absent, the him-3(me80) mutant supports assembly of synaptonemal complex protein SYP-1 along some paired chromosomes, resulting in partial competence for chiasma formation. We present both genetic and cytological evidence indicating that the him-3(me80) mutation leads to an increased incidence of meiotic products with two crossovers. These results indicate that limiting the amount of a major axis component results in a reduced capacity to communicate the presence of a (nascent) crossover and/or to discourage others in response.  相似文献   

13.
In mammalian meiosis, homologous chromosome synapsis is coupled with recombination. As in most eukaryotes, mammalian meiocytes have checkpoints that monitor the fidelity of these processes. We report that the mouse ortholog (Trip13) of pachytene checkpoint 2 (PCH2), an essential component of the synapsis checkpoint in Saccharomyces cerevisiae and Caenorhabditis elegans, is required for completion of meiosis in both sexes. TRIP13-deficient mice exhibit spermatocyte death in pachynema and loss of oocytes around birth. The chromosomes of mutant spermatocytes synapse fully, yet retain several markers of recombination intermediates, including RAD51, BLM, and RPA. These chromosomes also exhibited the chiasmata markers MLH1 and MLH3, and okadaic acid treatment of mutant spermatocytes caused progression to metaphase I with bivalent chromosomes. Double mutant analysis demonstrated that the recombination and synapsis genes Spo11, Mei1, Rec8, and Dmc1 are all epistatic to Trip13, suggesting that TRIP13 does not have meiotic checkpoint function in mice. Our data indicate that TRIP13 is required after strand invasion for completing a subset of recombination events, but possibly not those destined to be crossovers. To our knowledge, this is the first model to separate recombination defects from asynapsis in mammalian meiosis, and provides the first evidence that unrepaired DNA damage alone can trigger the pachytene checkpoint response in mice.  相似文献   

14.
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.  相似文献   

15.
Joyce EF  McKim KS 《Genetics》2009,181(1):39-51
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisions. We show here that mutations in Drosophila genes required to process DSBs into crossovers delay two important steps in meiotic progression: a chromatin-remodeling process associated with DSB formation and the final steps of oocyte selection. Consistent with the hypothesis that a checkpoint has been activated, the delays in meiotic progression are suppressed by a mutation in the Drosophila homolog of pch2. The PCH2-dependent delays also require proteins thought to regulate the number and distribution of crossovers, suggesting that this checkpoint monitors events leading to crossover formation. Surprisingly, two lines of evidence suggest that the PCH2-dependent checkpoint does not reflect the accumulation of unprocessed recombination intermediates: the delays in meiotic progression do not depend on DSB formation or on mei-41, the Drosophila ATR homolog, which is required for the checkpoint response to unrepaired DSBs. We propose that the sites and/or conditions required to promote crossovers are established independently of DSB formation early in meiotic prophase. Furthermore, the PCH2-dependent checkpoint is activated by these events and pachytene progression is delayed until the DSB repair complexes required to generate crossovers are assembled. Interestingly, PCH2-dependent delays in prophase may allow additional crossovers to form.  相似文献   

16.
Heteromorphic sex chromosomes, such as the X/Y pair in mammals, differ in size and DNA sequence yet function as homologs during meiosis; this bivalent asymmetry presents special challenges for meiotic completion. In Caenorhabditis elegans males carrying mnT12, an X;IV fusion chromosome, mnT12 and IV form an asymmetric bivalent: chromosome IV sequences are capable of pairing and synapsis, while the contiguous X portion of mnT12 lacks a homologous pairing partner. Here, we investigate the meiotic behavior of this asymmetric neo-X/Y chromosome pair in C. elegans. Through immunolocalization of the axis component HIM-3, we demonstrate that the unpaired X axis has a distinct, coiled morphology while synapsed axes are linear and extended. By showing that loci at the fusion-proximal end of IV become unpaired while remaining synapsed as pachytene progresses, we directly demonstrate the occurrence of synaptic adjustment in this organism. We further demonstrate that meiotic crossover distribution is markedly altered in males with the asymmetric mnT12/+ bivalent relative to controls, resulting in greatly reduced crossover formation near the X;IV fusion point and elevated crossovers at the distal end of the bivalent. In effect, the distal end of the bivalent acts as a neo-pseudoautosomal region in these males. We discuss implications of these findings for mechanisms that ensure crossover formation during meiosis. Furthermore, we propose that redistribution of crossovers triggered by bivalent asymmetry may be an important driving force in sex chromosome evolution.  相似文献   

17.
During meiosis, DNA replication is followed by two successive rounds of chromosome segregation (meiosis I and II), which give rise to genetically diverse haploid gametes. The prophase of the first meiotic division is highly regulated and alignment and synapsis of the homologous chromosomes during this stage are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex results in cell death, impaired meiotic recombination and aneuploidy. Oocytes with meiotic defects often survive the first meiotic prophase and give rise to aneuploid gametes. Similarly affected spermatocytes, on the other hand, almost always undergo apoptosis at a male-specific meiotic checkpoint, located specifically at epithelial stage IV during spermatogenesis. Many examples of this stage IV-specific arrest have been described for several genetic mouse models in which DNA repair or meiotic recombination are abrogated. Interestingly, in C. elegans, meiotic recombination and synapsis are monitored by two separate checkpoint pathways. Therefore we studied spermatogenesis in several knockout mice (Sycp1(-/-), Sycp3(-/-), Smc1beta(-/-) and Sycp3/Sycp1 and Sycp3/Smc1beta double-knockouts) that are specifically defective in meiotic pairing and synapsis. Like for recombination defects, we found that all these genotypes also specifically arrest at epithelial stage IV. It seems that the epithelial stage IV checkpoint eliminates spermatocytes that fail a certain quality check, being either synapsis or DNA damage related.  相似文献   

18.
19.
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RL(inv)) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RL(inv) during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.  相似文献   

20.
Studies performed on human trisomic 21 oocytes have revealed that during meiosis, the three homologues 21 synapse and, in some cases, achieve what looks like a trivalent. This implies that meiotic recombination takes place among the three homologous chromosomes 21, and to some extent, crossovers form between them. To see how meiotic recombination is in the presence of an extra chromosome 21, we analyzed the distribution of three recombination markers (γH2AX, RPA, and MLH1) on trisomic 21 oocytes at pachynema and, in particular, on chromosomes 21. Results clearly show how the presence of an extra chromosome 21 alters meiotic recombination progression, leading to the presence of a higher number of early recombination markers at pachynema. Moreover, the distribution on these chromosomes 21 of some of these markers is different in aneuploid oocytes. Finally, there is a substantial increase in the number of MLH1 foci, a marker of most crossovers in mammals, which is related to the number of synapsed chromosomes in pachynema. Thus, bivalents 21 had fewer MLH1 foci than partial or total trivalents, suggesting a close relationship between synapsis and crossover designation. All of the data presented suggest that the presence of an extra chromosome alters meiotic recombination globally in aneuploid human oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号