首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5-diethoxyphosphoryl-5-methyl-pyrroline-N-oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

2.
Urate oxidase catalyzes the oxidation of uric acid with poor solubility to produce 5-hydroxyisourate and allantoin. Since allantoin is excreted in vivo, urate oxidase has the potential to be a therapeutic target for the treatment of gout. However, its severe immunogenicity limits its clinical application. Furthermore, studies on the structure-function relationships of urate oxidase have proven difficult. We developed a method for genetically incorporating p-azido-L-phenylalanine into target protein in Escherichia coli in a site-specific manner utilizing a tyrosyl suppressor tRNA/aminoacyl-tRNA synthetase system. We substituted p-azido-L-phenylalanine for Phe(170) or Phe(281) in urate oxidase. The products were purified and their enzyme activities were analyzed. In addition, we optimized the system by adding a "Shine-Dalgarno (SD) sequence" and tandem suppressor tRNA. This method has the benefit of site-specifically modifying urate oxidase with homogeneous glycosyl and PEG derivates, which can provide new insights into structure-function relationships and improve pharmacological properties of urate oxidase.  相似文献   

3.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5‐diethoxyphosphoryl‐5‐methyl‐pyrroline‐N‐oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

4.
微生物来源的尿酸氧化酶的研究进展及应用前景   总被引:2,自引:0,他引:2  
尿酸氧化酶是一种重要的医药用酶,它催化嘌呤代谢途径中的尿酸氧化生成尿囊素和过氧化氢,因而被广泛用于治疗痛风,检测血液尿酸浓度,预防和治疗由于肿瘤化学治疗引起的高尿酸血症。综述了尿酸氧化酶的来源、酶学性质、基因克隆与表达及其用途,并对其在应用中存在的问题和前景作了展望。  相似文献   

5.
尿酸氧化酶在大肠杆菌中的表达、纯化及活性鉴定   总被引:1,自引:0,他引:1  
尿酸氧化酶(urate oxidase,Uricase,EC.1.7.3.3)是一种能将尿酸氧化为尿囊素的蛋白酶。合成黄曲霉(Aspergillus flavus)尿酸氧化酶基因,构建表达载体pET43.1a/uox,重组质粒经双酶切鉴定和序列分析,证明插入序列正确,转化到大肠杆菌(Escherichia coli)JM109,菌株经诱导表达尿酸氧化酶蛋白,目的蛋白经过超声破碎,经检测以可溶性蛋白为主;菌体经超声破碎后,上清经过阴离子柱和阳离子柱两步纯化,得到尿酸氧化酶纯品,纯品以分光光度法进行体外酶活性测定。结果显示:尿酸氧化酶在大肠杆菌中获得高效表达,目的蛋白占菌体总蛋白的50%;表达产物经过两步层析柱纯化,获得电泳扫描纯度为95%的纯品;在体外活性测定中具有分解尿酸的能力,在临床检测和治疗中有重要意义。  相似文献   

6.
Studies on the Physiology of Bacillus fastidiosus   总被引:2,自引:2,他引:2       下载免费PDF全文
Bacillus fastidiosus was grown in a minimal medium that contained uric acid or allantoin, aerated by vigorous stirring. A constant, optimum pH of 7.4 was maintained by controlled addition of sulfuric acid. Washed cells converted both urate and allantoin into carbon dioxide and ammonia, simultaneously assimilating part of the available carbon and nitrogen. Urate oxidase (formerly called uricase) was present in extracts from urate-grown but not allantoin-grown cells. The formation of urate oxidase was apparently induced by urate. Urea was detected as an intermediate in some but not all of these experiments. However, the high urease activity observed in cell-free extracts may have prevented accumulation of urea in many of the experiments. The presence of glyoxylate carboligase and tartronic semialdehyde reductase activities indicates that the glycerate pathway may be involved in urate and allantoin catabolism in this organism.  相似文献   

7.
Urate oxidase (E.C.1.7.3.3; uricase, urate oxygen oxidoreductase) is an enzyme of the purine breakdown pathway that catalyzes the oxidation of uric acid in the presence of oxygen to allantoin and hydrogen peroxide. A 96-well plate assay measurement of urate oxidase activity based on hydrogen peroxide quantitation was developed. The 96-well plate method included two steps: an incubation step for the urate oxidase reaction followed by a step in which the urate oxidase activity is stopped in the presence of 8-azaxanthine, a competitive inhibitor. Hydrogen peroxide is quantified during the second step by a horseradish peroxidase-dependent system. Under the defined conditions, uric acid, known as a radical scavenger, did not interfere with hydrogen peroxide quantification. The general advantages of such a colorimetric assay performed in microtiter plates, compared to other methods and in particular the classical UV method performed with cuvettes, are easy handling of large amounts of samples at the same time, the possibility of automation, and the need for less material. The method has been applied to the determination of the kinetic parameters of rasburicase, a recombinant therapeutic enzyme.  相似文献   

8.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5–10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non‐recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost‐effective option in the management of hyperuricemia.  相似文献   

9.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5-10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non-recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost-effective option in the management of hyperuricemia.  相似文献   

10.
The oxidative catabolism of uric acid produces 5-hydroxyisourate (HIU), which is further degraded to (S)-allantoin by two enzymes, HIU hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. The intermediates of the latter two reactions, HIU and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, are unstable in solution and decay nonstereospecifically to allantoin. In addition, nonenzymatic racemization of allantoin has been shown to occur at physiological pH. Since the further breakdown of allantoin is catalyzed by allantoinase, an enzyme that is specific for (S)-allantoin, an allantoin racemase is necessary for complete and efficient catabolism of uric acid. In this work, we characterize the structure and activity of allantoin racemase from Klebsiella pneumoniae (KpHpxA). In addition to an unliganded structure solved using selenomethionyl single-wavelength anomalous dispersion, structures of C79S/C184S KpHpxA in complex with allantoin and with 5-acetylhydantoin are presented. These structures reveal several important features of the active site including an oxyanion hole and a polar binding pocket that interacts with the ureido tail of allantoin and serves to control the orientation of the hydantoin ring. The ability of KpHpxA to interconvert the (R)- and (S)-enantiomers of allantoin is demonstrated, and analysis of the steady-state kinetics of KpHpxA yielded a kcat/Km of 6.0 × 105 M− 1 s− 1. Mutation of either of the active-site cysteines, Cys79 or Cys184, to serine inactivates this enzyme. The data presented provide new insights into the activity and substrate specificity of this enzyme and enable us to propose a mechanism for catalysis that is consistent with the two-base mechanism observed in other members of the aspartate/glutamate family.  相似文献   

11.
Uric acid is the main nitrogenous waste product in birds but it is also known to be a potent antioxidant. Hominoid primates and birds lack the enzyme urate oxidase, which oxidizes uric acid to allantoin. Consequently, the presence of allantoin in their plasma results from non-enzymatic oxidation. In humans, the allantoin to uric acid ratio in plasma increases during oxidative stress, thus this ratio has been suggested to be an in vivo marker for oxidative stress in humans. We measured the concentrations of uric acid and allantoin in the plasma and ureteral urine of white-crowned sparrows (Zonotrichia leucophrys gambelii) at rest, immediately after 30 min of exercise in a hop/hover wheel, and after 1 h of recovery. The plasma allantoin concentration and the allantoin to uric acid ratio did not increase during exercise but we found a positive relationship between the concentrations of uric acid and allantoin in the plasma and in the ureteral urine in the three activity phases. In the plasma, the slope of the regression describing the above positive relationships was significantly higher immediately after activity. We suggest that the slope indicates the rate of uric acid oxidation and that during activity this rate increases as a result of higher production of free radicals. The present study demonstrates that allantoin is present in the plasma and in the ureteral urine of white-crowned sparrows and therefore might be useful as an indicator of oxidative stress in birds.  相似文献   

12.
The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a Ki of 30 ± 2 μm. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.  相似文献   

13.
The physiological ability to estivate is relevant for the maintenance of population size in the invasive Pomacea canaliculata. However, tissue reoxygenation during arousal from estivation poses the problem of acute oxidative stress. Uric acid is a potent antioxidant in several systems and it is stored in specialized tissues of P. canaliculata. Changes in tissue concentration of thiobarbituric acid reactive substances (TBARS), uric acid and allantoin were measured during estivation and arousal in P. canaliculata. Both TBARS and uric acid increased two-fold during 45 days estivation, probably as a consequence of concomitant oxyradical production during uric acid synthesis by xanthine oxidase. However, after arousal was induced, uric acid and TBARS dropped to or near baseline levels within 20 min and remained low up to 24h after arousal induction, while the urate oxidation product allantoin continuously rose to a maximum at 24h after induction, indicating the participation of uric acid as an antioxidant during reoxygenation. Neither uric acid nor allantoin was detected in the excreta during this 24h period. Urate oxidase activity was also found in organs of active snails, but activity shut down during estivation and only a partial and sustained recovery was observed in the midgut gland.  相似文献   

14.
1. The aerobic loss of GSH added to the supernatant fraction from rat liver is much increased by including the microsome fraction, which both inhibits the concurrent reduction of the GSSG formed and also augments the net oxidation rate. 2. Oxidation occurs with a mixture of dialysed supernatant and a protein-free filtrate; the latter is replaceable by hypoxanthine and the former by xanthine oxidase, whereas fractions lacking this enzyme give no oxidation. 3. In all these instances augmentation occurs with microsomes, with fractions having urate oxidase activity and with the purified enzyme; uric acid and microsomes alone also support the oxidation. 4. Evidence implicating additional protein factors is discussed. 5. It is suggested that GSH oxidation by homogenate is linked through glutathione peroxidase to the reaction of endogenous substrate with supernatant xanthine oxidase and of the uric acid formed with peroxisomal urate oxidase.  相似文献   

15.
1. In eight Dalmatian dogs low and high purine intakes resulted in plasma urate levels from 25 to 185 mumol/l. 2. The relationship between purine intake and excretion of uric acid and allantoin per day was described by linear regression equations. 3. The elimination of endogenous purines was 1.8 mmol/day for urate and 1.7 mmol/day for allantoin. Exogenous purines increased renal excretion by 0.57 mmol/mmol. 4. Kinetic measurements with [2(-14)C]uric acid infused continuously into each of two dogs on low and high purine revealed increases of plasma pool (urate + allantoin) of 3.3 fold and entry rate of 4.0 fold. Conversion of urate into allantoin increased from 20 to 36%. 5. Renal elimination of catabolites increased 3.3 fold and exhalation rate of purine-CO2 379 fold. Extra-renal elimination at high purine intake was quantitatively similar to humans and closely related to pool size.  相似文献   

16.
All Dalmatian dogs have an inherited defect in purine metabolism leading to high levels of uric acid excretion in their urine (hyperuricosuria) rather than allantoin, the normal end product of purine metabolism in all other breeds of dog. Transplantation experiments have demonstrated that the defect is intrinsic to the liver and not the kidney. Uricase, the enzyme involved in the breakdown of urate into allantoin, has been shown to function in Dalmatian liver cells. Therefore, candidate genes for this defect include transporters of urate, a salt of uric acid, across cell membranes. We excluded one such urate transporter candidate, galectin 9, using a Dalmatian x Pointer backcross in which hyperuricosuria was segregating.  相似文献   

17.
This study was carried out on carotid artery plaque and plasma of 50 patients. We analyzed uric acid, hypoxanthine, xanthine, and allantoin levels to verify if enzymatic purine degradation occurs in advanced carotid plaque; we also determined free radicals and sulphydryl groups to check if there is a correlation between oxidant status and purine catabolism. Comparing plaque and plasma we found higher levels of free radicals, hypoxanthine, xanthine, and a decrease of some oxidant protectors, such as sulphydryl groups and uric acid, in plaque. We also observed a very important phenomenon in plaque, the presence of allantoin due to chemical oxidation of uric acid, since humans do not have the enzyme uricase. The hypothetical elevated activity of xanthine oxidase in atherosclerosis could be reduced by specific therapies using its inhibitors, such as oxypurinol or allopurinol.  相似文献   

18.
This study was carried out on carotid artery plaque and plasma of 50 patients. We analyzed uric acid, hypoxanthine, xanthine, and allantoin levels to verify if enzymatic purine degradation occurs in advanced carotid plaque; we also determined free radicals and sulphydryl groups to check if there is a correlation between oxidant status and purine catabolism. Comparing plaque and plasma we found higher levels of free radicals, hypoxanthine, xanthine, and a decrease of some oxidant protectors, such as sulphydryl groups and uric acid, in plaque. We also observed a very important phenomenon in plaque, the presence of allantoin due to chemical oxidation of uric acid, since humans do not have the enzyme uricase. The hypothetical elevated activity of xanthine oxidase in atherosclerosis could be reduced by specific therapies using its inhibitors, such as oxypurinol or allopurinol.  相似文献   

19.
The ureide pathway, which mediates the oxidative degradation of uric acid to (S)-allantoin, represents the late stage of purine catabolism in most organisms. The details of uric acid metabolism remained elusive until the complete pathway involving three enzymes was recently identified and characterized. However, the molecular details of the exclusive production of one enantiomer of allantoin in this pathway are still undefined. Here we report the crystal structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase, which catalyzes the last reaction of the pathway, in a complex with the product, (S)-allantoin, at 2.5-A resolution. The homodimeric helical protein represents a novel structural motif and reveals that the active site in each monomer contains no cofactors, distinguishing this enzyme mechanistically from other cofactor-dependent decarboxylases. On the basis of structural analysis, along with site-directed mutagenesis, a mechanism for the enzyme is proposed in which a decarboxylation reaction occurs directly, and the invariant histidine residue in the OHCU decarboxylase family plays an essential role in producing (S)-allantoin through a proton transfer from the hydroxyl group at C4 to C5 at the re-face of OHCU. These results provide molecular details that address a longstanding question of how living organisms selectively produce (S)-allantoin.  相似文献   

20.
In our previous experiments on rat liver we found that 15' after intraperitoneal administration of 14C-formate the specific radioactivity of allantoin was always higher than that of uric acid. The present experiments have been carried out to interpret this unexpected result, which was only observed in liver and we studied: a) the incorporation of 14C-glycine into uric acid and allantoin; b) the effects of two competitive inhibitors of xanthine oxidase and uricase, oxonic acid and allopurinol respectively, on levels of uric acid and allantoin in liver and on their specific radioactivity after administration of labelled precursor. The results suggested: a) that under normal conditions, the formation of allantoin is so fast that it exceedes export from liver to serum, and thus the radioactivity of labelled precursors accumulates in allantoin; b) that when allopurinol or oxonic acid are administered, the rate of export exceeds that of allantoin formation and the incorporation of radioactivity into allantoin is lower; c) that not all the data, however, could be interpreted on this basis, but seems to require the existence of different pools of uric acid, which are transformed separately into allantoin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号