首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila ninaG mutant is characterized by low levels of Rh1 rhodopsin, because of the inability to transport this rhodopsin from the endoplasmic reticulum to the rhabdomere. ninaG mutants do not affect the biogenesis of the minor opsins Rh4 and Rh6. A genetic analysis placed the ninaG gene within the 86E4-86E6 chromosomal region. A sequence analysis of the 15 open reading frames within this region from the ninaG(P330) mutant allele identified a stop codon in the CG6728 gene. Germ-line transformation of the CG6728 genomic region rescued the ninaG mutant phenotypes, confirming that CG6728 corresponds to the ninaG gene. The NinaG protein belongs to the glucose-methanol-choline oxidoreductase family of flavin adenine dinucleotide-binding enzymes catalyzing hydroxylation and oxidation of a variety of small organic molecules. High performance liquid chromatography analysis of retinoids was used to gain insight into the in vivo role of the NinaG oxidoreductase. The results show that when Rh1 is expressed as the major rhodopsin, ninaG flies fail to accumulate 3-hydroxyretinal. Further, in transgenic flies expressing Rh4 as the major rhodopsin, 3-hydroxyretinal is the major retinoid in ninaG+, but a different retinoid profile is observed in ninaG(P330). These results indicate that the ninaG oxidoreductase acts in the biochemical pathway responsible for conversion of retinal to the rhodopsin chromophore, 3-hydroxyretinal.  相似文献   

2.
3.
When the fruitfly, Drosophila melanogaster, was reared on media deficient in carotenoids and retinoids, the level of 3-hydroxyretinal (the chromophore of fly rhodopsin) in the retina decreased to less than 1% compared with normal flies. The level of 3-hydroxyretinal increased markedly in flies that were given a diet supplemented with retinoids or carotenoids. The retinas of flies fed on all-trans retinoids and maintained in the dark predominantly contained the all-trans form of 3-hydroxyretinal, and showed no increase in the level of either the 11-cis isomer or the visual pigment. Subsequent illumination of the flies converted substantial amounts of all-trans 3-hydroxyretinal to its 11-cis isomer. The action spectrum of the conversion by illumination showed the optimum wavelength to be approximately 420 nm, which is significantly greater than the absorption maximum of free, all-trans 3-hydroxyretinal. Flies that were fed on carotenoids showed a rapid increase of the levels of 11-cis 3-hydroxyretinal and of visual pigment in the absence of light.  相似文献   

4.
The cDNA encoding a visual pigment of the locust Schistocerca gregaria has been inserted into the germline of the ninaE mutant of Drosophila melanogaster by P-element-mediated transformation. Functional expression has been documented by recording light-regulated electroretinograms in transgenic flies. The spectral properties of the expressed visual pigment were determined with detergent-solubilized material, prepared from the eyecups of the transgenic D. melanogaster. The recombinant locust pigment, as well as the genuine pigment of the fruitfly (Rh1) that served as a control for transformation/expression, showed photoreversibility between the pigment and metapigment forms. The absorptions of the difference spectra identify the locust visual pigment as a short wavelength-absorbing, blue-light-sensitive photoreceptor. The absorption maxima are similar to those recorded on living locust animals. These results show that, although locust visual pigments contain 11-cis retinal as chromophore, the expressed protein is able to adopt 3-hydroxyretinal that is provided by the transgenic fruitflies. The electrophysiological recordings reveal that the locust visual pigment is able to induce phototransduction in the fruitfly. The reported results have two important consequences: On the one hand, the binding site of the locust opsin is apparently able to interact with the 3-hydroxyretinal from Drosophila in a way that the biological signal generated by the photoisomerization of the chromophore can be used by the protein to adopt a physiologically active conformation. On the other hand, despite the relatively large phylogenetic distance between both insect species, the extent of conservation between the protein domains thought to be involved in G-protein activation is striking.  相似文献   

5.
The bioluminescent squid, Watasenia scintillans has three visual pigments. The major pigment, based on retinal (lambda max 484 nm), is distributed over the whole retina. Another pigment based on 3-dehydroretinal (lambda max approximately 500 nm) and the third pigment (lambda max approximately 470 nm) are localized in the specific area of the ventral retina just receiving the downwelling light. Visual pigment was extracted and purified from the dissected retina. The chromophores were then extracted and analyzed with HPLC, NMR, infrared and mass spectroscopy, being compared with the synthetic 4-hydroxyretinal. A new retinal derivative, 11-cis-4-hydroxyretinal, is identified as the chromophore of the third visual pigment of the squid.  相似文献   

6.
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.  相似文献   

7.
Tsutsui K  Imai H  Shichida Y 《Biochemistry》2008,47(41):10829-10833
Protonation of the retinal Schiff base chromophore is responsible for the absorption of visible light and is stabilized by the counterion residue E113 in vertebrate visual pigments. However, this residue is also conserved in vertebrate UV-absorbing visual pigments (UV pigments) which have an unprotonated Schiff base chromophore. To elucidate the role played by this residue in the photoisomerization of the unprotonated chromophore in UV pigments, we measured the quantum yield of the E113Q mutant of the mouse UV cone pigment (mouse UV). The quantum yield of the mutant was much lower than that of the wild type, indicating that E113 is required for the efficient photoisomerization of the unprotonated chromophore in mouse UV. Introduction of the E113Q mutation into the chicken violet cone pigment (chicken violet), which has a protonated chromophore, caused deprotonation of the chromophore and a reduction in the quantum yield. On the other hand, the S90C mutation in chicken violet, which deprotonated the chromophore with E113 remaining intact, did not significantly affect the quantum yield. These results suggest that E113 facilitates photoisomerization in both UV-absorbing and visible light-absorbing visual pigments and provide a possible explanation for the complete conservation of E113 among vertebrate UV pigments.  相似文献   

8.
Selby CP  Sancar A 《Biochemistry》2012,51(1):167-171
The photolyase/cryptochrome family of proteins are FAD-containing flavoproteins which carry out blue-light-dependent functions including DNA repair, plant growth and development, and regulation of the circadian clock. In addition to FAD, many members of the family contain a second chromophore which functions as a photo-antenna, harvesting light and transferring the excitation energy to FAD and thus increasing the efficiency of the system. The second chromophore is methenyltetrahydrofolate (MTHF) in most photolyases characterized to date and FAD, FMN, or 5-deazariboflavin in others. To date, no second chromophore has been identified in cryptochromes. Drosophila contains three members of the cryptochrome/photolyase family: cyclobutane pyrimidine dimer (CPD) photolyase, (6-4) photoproduct photolyase, and cryptochrome. We developed an expression system capable of incorporating all known second chromophores into the cognate cryptochrome/photolyase family members. Using this system, we demonstrate that Drosophila CPD photolyase and (6-4) photolyase employ 5-deazariboflavin as their second chromophore, but Drosophila cryptochrome, which is evolutionarily closer to (6-4) photolyase than the CPD photolyase, lacks a second chromophore.  相似文献   

9.
  1. Relative retinal amounts in the compound eye of the Antarctic amphipod Orchomene plebs were assessed during conditions of continuous summer daylight every 3 h over a period of 48 h. The habitat of the experimental animal is the bottom of the Ross Sea (78°S; 166°E) down to depths of at least 400 m; water temperature is a constant — 1.8° C. A periodicity of 12 h was detected with relative amounts of 11-cis retinal exhibiting peaks at midday and at midnight and troughs at 7.00 h and 19.00 h.
  2. The result that 90% of retinoid were insoluble in n-hexane suggests that at least 90% of the measured retinoid were attached to membrane-bound proteins such as opsin.
  3. Selective light adaptation showed that the visual pigments were thermostable and photoregenerable. The main absorbance peak of rhodopsin, compared with metarhodopsin, seems to be in the longer wavelengths.
  相似文献   

10.
11.
12.
Using early receptor potential (ERP) measurements, we show that the bistable pigment in the barnacle photoreceptor behaves according to the conclusions of the preceding article (Hochstein et al., 1978): (1) The populations of both stable states approach their steady-state or saturation values under steady illumination exponentially with the same rate constant; the wavelength dependence of this rate constant is called the relaxation spectrum. — (2) The saturation values are independent of initial population and of light intensity; the wavelength dependence of the saturation population is called the saturation spectrum. — (3) The measured relaxation and saturation spectra agree with those calculated, by the theory of the preceding article, from the experimentally determined transition parameters of the pigment system. — We then demonstrate the applicability of relaxation and saturation measurements to the question of whether a single bi-stable pigment system serves, or two or more separate systems serve, as the origins(s) of the ERP and of other phenomena observed in the barnacle photoreceptor: The prolonged depolarizing afterpotential (PDA) and its depression and prevention (anti-PDA). By showing that the relaxation spectra for these phenomena match one another and that of the ERP, and that the same is true for the saturation spectra, we demonstrate that these phenomena originate from the same single bi-stable pigment system as the ERP.  相似文献   

13.
14.
The AP-3 adaptor protein complex has been implicated in the biogenesis of lysosome-related organelles, such as pigment granules/melanosomes, and synaptic vesicles. Here we compare the relative importance of AP-3 in the biogenesis of these organelles in Drosophila melanogaster. We report that the Drosophila pigmentation mutants orange and ruby carry genetic lesions in the σ3 and β3-adaptin subunits of the AP-3 complex, respectively. Electron microscopy reveals dramatic reductions in the numbers of electron-dense pigment granules in the eyes of these AP-3 mutants. Mutant flies also display greatly reduced levels of pigments housed in these granules. In contrast, electron microscopy of retinula cells reveals numerous synaptic vesicles in both AP-3 mutant and wild-type flies, while behavioral assays show apparently normal locomotor ability of AP-3 mutant larvae. Together, these results demonstrate that Drosophila AP-3 is critical for the biogenesis of pigment granules, but is apparently not essential for formation of a major population of synaptic vesicles in vivo. Received: 1 February 2000 / Accepted: 10 April 2000  相似文献   

15.
The blind Drosophila mutant ninaD lacks the visual chromophore. Genetic evidence that the molecular basis is a defect in carotenoid uptake which causes vitamin A deficiency exists. The ninaD gene encodes a scavenger receptor that is significantly homologous in sequence with the mammalian scavenger receptors SR-BI (scavenger receptor class B type I) and CD36 (cluster determinant 36), yet NinaD has not been characterized in functional detail. Therefore, we established a Drosophila S2 cell culture system for biochemically characterizing the ninaD gene products. We show that the two splice variant isoforms encoded by ninaD exhibit different subcellular localizations. NinaD-I, the long protein variant, is localized at the plasma membrane, whereas the short variant, NinaD-II, is localized at intracellular membranes. Only NinaD-I could mediate the cellular uptake of carotenoids from micelles in this cell culture system. Carotenoid uptake was concentration-dependent and saturable. By in vivo analyses of different mutant and transgenic fly strains, we provide evidence of an essential role of NinaD-I in the absorption of dietary carotenoids to support visual chromophore synthesis. Moreover, our analyses suggest a role of NinaD-I in tocopherol metabolism. Even though Drosophila is a sterol auxotroph, we found no evidence of a contribution of NinaD-I to the uptake of these compounds. Together, our study establishes an evolutionarily conserved connection between class B scavenger receptors and the numerous functions of fat soluble vitamins in animal physiology.  相似文献   

16.
The role of stress proteins in membrane biogenesis   总被引:17,自引:0,他引:17  
  相似文献   

17.
From the retina of the land-locked population of the sea lamprey, Petromyzon marinus, a photolabile pigment was extracted which was identified spectrophotometrically as a member of the rhodopsin group of pigments. Using the absorption spectrum of a relatively pure solution and analysis by means of difference spectra, the peak of this pigment was placed at about 497 mµ. The method of selective bleaching by light of different wave lengths revealed no significant amounts of any other pigment in the extracts. A similar pigment was also detected in retinal extracts of the Pacific Coast lamprey, Entospenus tridentatus. These results are significant for two reasons: (a) the lamprey is shown to be an example of an animal which spawns in fresh water but which is characterized by the presence of rhodopsin, rather than porphyropsin, in the retina; (b) the primitive phylogenetic position of the lamprey suggests that rhodopsin was the visual pigment of the original vertebrates.  相似文献   

18.
Retinal extracts of the Australian gecko, Phyllurus milii (White), have revealed the presence of a photosensitive pigment, unusual for terrestrial animals, because of its absorption maximum at 524 mµ. This pigment has an absorption spectrum which is identical in form with that of other visual chromoproteins. It is not a porphyropsin, for bleaching revealed the presence, not of retinene2, but of retinene1 as a chromophore. Photolabile pigments with characteristics similar to those of the Phyllurus visual pigment were also detected in retinal extracts of six other species of nocturnal geckos. The presence of this retinal chromoprotein adequately accounts for the unusual visual sensitivity curve described by Denton for the nocturnal gecko. This pigment may have special biological significance in terms of the unique phylogenetic position of geckos as living representatives of nocturnal animals which retain some of the characteristics of their diurnal ancestors. The occurrence of this retinene1 pigment, intermediate in spectral position between rhodopsin and iodopsin, is interpreted in support of the transmutation theory of Walls. The results and interpretation of this investigation point up the fact that, from a phylogenetic point of view, too great an emphasis on the duplicity theory may serve to detract attention from the evolutionary history of the retina and the essential unitarianism of the visual cells.  相似文献   

19.
First various models that have been proposed for the primary photoevent in vision are critically discussed. It is concluded that the classical picture of a single cis-trans isomerization step is the only one which satisfactorily accounts for all the available experimental data. Experiments are performed showing that this process is temperature independent over a range of 200 C. In contrast to the efficient and wavelength independent photobleaching of rhodopsin, the yields of the 11-cis all-trans isomerization of the free protonated Schiff base chromophore are small, exhibiting a marked dependence on the excitation wavelength. Potential energy curves for both ground and excited states of rhodopsin are derived from the analysis of the accumulated experimental data (Rosenfeld, Honig, Ottolenghi, and Ebrey, Pure Appl. Chem., in press). In variance with the behavior of model compounds, photoisomerization in the pigment proceeds via the quantitative population of a common, barrierless, thermally relaxed excited state along the 11–12 torsional coordinate separating the 11-cis (rhodopsin) and all-trans (bathorhodopsin) configurations. In the ground state, interactions with the protein destabilize the all-trans isomerization product, leading to storage of a significant fraction of the photon's energy in the primary step.Next, the photochemistry of the purple membrane protein of Halobacterium halobium is discussed. It is suggested that, as in the case of visual pigments, the primary photoevent is a geometrical change in the chromophore. Also, as with visual pigments, the resulting primary photoproduct must have the highest free energy of any form of the pigment. The quantum yield for the formation of the 412 nm intermediate (M) is c. 0.26, while that for the back reaction is c. 0.68 (Becher and Ebrey, Biophys. J., in press). The sum of these two quantum yields is c. 1.0, suggesting, again like rhodopsin, that the primary photochemistry proceeds through a common excited state shared by the pigment and its bathoproduct.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

20.
Lysosomal protein trafficking is a fundamental process conserved from yeast to humans. This conservation extends to lysosome-like organelles such as mammalian melanosomes and insect eye pigment granules. Recently, eye and coat color mutations in mouse (mocha and pearl) and Drosophila (garnet and carmine) were shown to affect subunits of the heterotetrameric adaptor protein complex AP-3 involved in vesicle trafficking. Here we demonstrate that the Drosophila eye color mutant ruby is defective in the AP-3beta subunit gene. ruby expression was found in retinal pigment and photoreceptor cells and in the developing central nervous system. ruby mutations lead to a decreased number and altered size of pigment granules in various cell types in and adjacent to the retina. Humans with lesions in the related AP-3betaA gene suffer from Hermansky-Pudlak syndrome, which is caused by defects in a number of lysosome-related organelles. Hermansky-Pudlak patients have a reduced skin pigmentation and suffer from internal bleeding, pulmonary fibrosis, and visual system malfunction. The Drosophila AP-3beta adaptin also appears to be involved in processes other than eye pigment granule biogenesis because all ruby allele combinations tested exhibited defective behavior in a visual fixation paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号