首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of leaf development on the levels of carboxyarabinitol1-phosphate (CA1P), carboxyarabinitol (CA), CA1P phosphataseactivity, ribulose bisphosphate carboxylase (rubisco) activity,photosynthesis, and rubisco catalytic sites was examined inPhaseolus vulgaris. Leaves were sampled at mid-day or after15 h dark over a 3 week growth period. Mid-day initial rubiscoactivities were comparable to net photosynthetic rates, reaching245 µmol (mg Chl)-1 h-1 at 67–100% full size (26–30µmolm-2 s-1). CA1P and CA were present at substantial levels inleaves of all ages (light and dark-treated, respectively), increasingby similar amounts throughout expansion. Total rubisco catalyticsites increased 2.4-fold to 58 nmol (mg Chl)-1 during leaf growthto 66% full size, remaining constant with further expansion.CA1P phosphatase activity was particularly low in the youngestleaves, and increased 14-fold during leaf expansion. CA1P content of dark bean leaves (nmol per mg Chl) was alwaysin excess of total rubisco catalytic sites throughout development,but decreased from 2.2-fold (mol CA1P per mol sites) in theyoungest leaves to 1.4-fold at maturation. The number of rubiscocatalytic sites bound to CA1P in the dark was measured in differentaged leaves after extracting leaves with 25 mM ammonium sulfate,which stabilizes the in vivo level of CA1P bound to rubisco.These measurements demonstrated that in the youngest leavesrelatively much less CA1P was bound to rubisco catalytic sitesin the dark. This was in contrast to what occurred in dark-treatedolder leaves, in which a large proportion of catalytic siteswere bound with CA1P. We suggest that in very young bean leaveseither rubisco has a reduced affinity for CA1P, or much of theCA1P in dark leaves may be bound to another, unidentified cellularcomponent(s). (Received April 25, 1995; Accepted June 30, 1995)  相似文献   

2.
Häusler RE  Schlieben NH  Flügge UI 《Planta》2000,210(3):383-390
 Transgenic tobacco (Nicotiana tabacum L.) plants with decreased and increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were used to study the control the TPT exerts on the flux of starch and sucrose biosynthesis, as well as CO2 assimilation, respiration and photosynthetic electron transport. For this purpose, tobacco lines with an antisense repression of the endogenous TPT (αTPT) and tobacco lines overexpressing a TPT gene from Flaveria trinervia (FtTPT) were used. In ambient CO2, there was no or little effect of altered TPT transport activities on either rates of photosynthetic electron transport and/or CO2 assimilation. However, in elevated CO2 (1500 μl · l−1) and low O2 (2%) the TPT exerted strong control on the rate of CO2 assimilation (control coefficient for the wild type; CJA TPT=0.30) in saturating light. Similarly, the incorporation of 14C into starch in high CO2 was increased in tobacco plants with decreased TPT activity, but was reduced in plants overexpressing the TPT from F. trinervia. Thus, the TPT exerted negative control on the rate of starch biosynthesis with a CJStarch TPT=−0.19 in the wild type estimated from a hyperbolic curve fitted to the data points. This was less than the positive control strength on the rate of sucrose biosynthesis (CJSuc TPT=0.35 in the wild type). Theoretically, the positive control exerted on sucrose biosynthesis should be numerically identical to the negative control on starch biosynthesis unless additional metabolic pathways are affected. The rate of dark respiration showed some correlation with the TPT activity in that it increased in FtTPT overexpressors, but decreased in αTPT plants with an apparent control coefficient of CJRes TPT=0.24. If the control on sucrose biosynthesis is referred to as “gain of carbon” (positive control) and the control on starch biosynthesis as well as dark respiration as a “loss of carbon” (negative control) for sucrose biosynthesis and subsequent export, the sum of the control coefficients on dark respiration and starch biosynthesis would be numerically similar to the control coefficient on the rate of sucrose biosynthesis. There was also some control on the rate of photosynthetic electron transport, but only at high light and in elevated CO2 combined with low O2. The control coefficient for the rate of photosynthetic electron transport was CJETR TPT=0.16 in the wild type. Control coefficients were also calculated for plants with elevated and lowered TPT activity. Furthermore, the extent to which starch degradation/glucose utilisation compensates for the lack of triose phosphate export was assessed. The TPT also exerted control on metabolite contents in air. Received: 26 March 1999 / Accepted: 21 August 1999  相似文献   

3.
The short-term changes in metabolism that occurred after adding glucose or sucrose to freshly cut discs from growing potato (Solanum tuberosum L.) tubers were investigated. (i) When glucose was supplied, there was a marked increase in glycolytic metabolites, and respiration was stimulated. When sucrose was supplied, amounts of glycolytic metabolites including hexose phosphates and 3-phosphoglycerate (3PGA) were similar to or lower than in control discs incubated without sugars, and respiration did not rise initially above that in control discs. This different response to sucrose and glucose was found across the concentration range 5–200 mM. A larger proportion of the metabolised 14C was converted to starch when [14C] sucrose was supplied than when [14C] glucose was supplied. The different effect on metabolite levels, respiration and starch synthesis was largest after 20–30 min, and decreased in longer incubations. (ii) When 5 or 25 mM sucrose was added in the presence of [14C] glucose, it led to a decrease in hexose phosphates and 3PGA, and a small increase in the rate of starch synthesis compared to discs incubated with glucose in the absence of sucrose. These differences were seen in a 30-min pulse and a 2-h pulse. Whereas ADP-glucose levels after adding sucrose resembled those in control discs, glucose led to a decrease in ADP-glucose. This decrease did not occur when 5 or 25 mM sucrose was added with the glucose. (iii) To check the relevance of these experiments for intact tubers, water or 100 mM mannitol, sucrose or glucose were supplied through the stolon to intact tubers for 24 h. A 0.2 mM solution of [14C] glucose was then introduced into the tubers, and its metabolism investigated during the next 30 min. Labelling of starch was increased after preincubation with sucrose, and significantly inhibited after preincubation with glucose. (iv) It is concluded that glucose and sucrose have different effects on tuber metabolism. Whereas glucose leads to a preferential stimulation of respiration, sucrose preferentially stimulates starch synthesis via a novel mechanism that allows stimulation of ADP-glucose pyrophosphorylase even though the levels of hexose phosphates and the allosteric activator 3PGA decrease. Received: 9 October 1997 / Accepted: 3 February 1998  相似文献   

4.
We investigated the effect of photosynthetic electron transport and of the photosystem II (PSII) chlorophyll (Chl) antenna size on the rate of PSII photoinhibitory damage. To modulate the rate of photosynthesis and the light-harvesting capacity in the unicellular chlorophyte Dunaliella salina Teod., we varied the amount of inorganic carbon in the culture medium. Cells were grown under high irradiance either with a limiting supply of inorganic carbon, provided by an initial concentration of 25 mM NaHCO3, or with supplemental CO2 bubbled in the form of 3% CO2 in air. The NaHCO3-grown cells displayed slow rates of photosynthesis and had a small PSII light-harvesting Chl antenna size (60 Chl molecules). The half-time of PSII photodamage was 40 min. When switched to supplemental CO2 conditions, the rate of photodamage was retarded to a t1/2 = 70 min. Conversely, CO2-supplemented cells displayed faster rates of photosynthesis and a larger PSII light-harvesting Chl antenna size (500 Chl molecules). They also showed a rate of photodamage with t1/2 = 40 min. When depleted of CO2, the rate of photodamage was accelerated (t1/2  = 20 min). These results indicate that the in-vivo susceptibility to photodamage is modulated by the rate of forward electron transport through PSII. Moreover, a large Chl antenna size enhances the rate of light absorption and photodamage and, therefore, counters the mitigating effect of forward electron transport. We propose that under steady-state photosynthesis, the rate of light absorption (determined by incident light intensity and PS Chl antenna size) and the rate of forward electron transport (determined by CO2 availability) modulate the oxidation/reduction state of the primary PSII acceptor QA, which in turn defines the low/high probability for photodamage in the PSII reaction center. Received: 14 August 1997 / Accepted: 26 September 1997  相似文献   

5.
Growth, ageing and death of a photoautotrophic plant cell culture   总被引:2,自引:0,他引:2  
Peters W  Ritter J  Tiller H  Valdes O  Renner U  Fountain M  Beck E 《Planta》2000,210(3):478-487
 Batch cultures of photoautotrophic cell suspensions of Chenopodiumrubrum L., growing in an inorganic medium on CO2 under a daily balanced light–dark regime of 16 : 8 h could be maintained for approximately 100 d without subcultivation. The long-lived cultures showed an initial cell division phase of 4 weeks, followed by a stationary phase of another 4 weeks, after which ageing and progressive cell death reduced the number of living cells and the cultures usually expired after another 3–4 weeks. These developmental phases of the cell culture were characterised with respect to photosynthetic performance, dark respiration, content of phytohormones and capacity of cell division. Cell division of the majority of the cells finished in the G1- or G0-phase of the cell cycle, caused by a pronounced decline in the endogenous levels of auxin and cytokinins. Supply of these growth factors to resting cells resulted in resumption of cytokinesis, at least by some of the cells. However, responsiveness to the phytohomones declined during the stationary phase, and subcultivation was no longer possible beyond day 60 when the phases of ageing and death commenced. Ageing was characterised by a further decline in the photosynthetic capacity of the cells, by a climacteric enhancement of dark respiration, but also by a slight increase in the level of IAA and cytokinins concomitant with a decrease in ethylene. Similarities and differences between the development of batch-cultured photoautotrophic cells of C. rubrum and that of a leaf are discussed with respect to using the cell culture as a model for a leaf. Received: 30 April 1999 / Accepted: 21 August 1999  相似文献   

6.
 A male gametophyte of the endemic Antarctic red macroalga Palmaria decipiens (Reinsch) Ricker was cultivated under fluctuating daylengths, simulating the seasonal changes at the site of collection (King George Island, Antarctica). The plant was maintained at 0±1°C, an irradiance of 25 μmol m-2 s-1 and under growth-saturating nutrient conditions. Samples were taken at intervals of 3–6 weeks to measure growth, photosynthesis, dark respiration and pigment content. The growth optimum in spring coincided with a higher photosynthetic activity. Whereas dark respiration was constantly low over the year, there was a rapid increase in maximum photosynthetic rate (Pmax) in conditions corresponding to September and October. This was correlated with a change in the initial slope (α) of the photosynthesis versus irradiance (P vs I) curve. Higher activity in photosynthesis mainly resulted from higher Chl a and phycobilin concentrations during Antarctic spring, an indication of an increase in absorption cross-section areas of photosynthetic reaction centres. These changes in physiology are discussed in relation to the seasonal growth “strategy” of the species, which is controlled by seasonal variation in daylength. Received: 27 February 1995/Accepted 3 October 1995  相似文献   

7.
Combined effect of light intensity and glucose concentration on Arthrospira platensis growth and photosynthetic response was evaluated using a 32 factorial design. This design was carried out with light levels of 50, 100, and 150 μmol photons m−2 s−1 and glucose concentrations of 0.5, 1.5, and 2.5 g L−1. Results from the response surface methodology were that the highest level of light intensity and glucose concentration improved biomass (1.33 g L−1), maximum specific growth rate (0.49 day−1), and net photosynthetic rate (139.89 μmol O2 mg Chl−1 h−1). Furthermore, the interaction of both factors showed that at low light, glucose had a low effect on maximum biomass and maximal net photosynthetic rate. However, at the highest light levels, the effect of glucose was more sensitive and the increase of glucose concentration increased the levels of all responses. The rates of the instantaneous relative growth, net photosynthesis, and dark respiration of growth cultures showed two different phases in mixotrophic condition. The first was distinguished by the preponderance of the photoautotrophic mode; the second was based mainly on photoheterotrophy.  相似文献   

8.
Mannose is an unusable carbon source for many plants. In our study we compared the effects of mannose and sucrose on growth and sucrose levels in azuki bean (Vigna angularis) cells grown in liquid media and in solid media. The suspension cells grew actively in a liquid medium containing 90 mM sucrose but not in that containing 90 mM mannose, where the intracellular sucrose levels were reduced to 20% or less of those in sucrose-grown cells. These results suggested that the limited conversion of mannose to sucrose resulted in cell growth inhibition. When sucrose-grown suspension cells (1 × 105) were transferred onto agar medium containing mannose, they grew little initially, but, after a month lag period, they started to form many callus colonies at a high apparent variation rate (1.3 × 10−3). Time-course studies for sugar and enzyme analysis revealed that the mannose-accommodated cells were capable of converting mannose to sucrose, with enhanced phosphomannose isomerase activity. The mannose-accommodated cells actively grew in liquid medium with sucrose but lost their ability to grow with mannose again, suggesting a specific trait of callus culture for mannose utilization. The possible differences in the metabolic activities and other physiological characteristics are discussed between callus and suspension cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Loef I  Stitt M  Geigenberger P 《Planta》2001,212(5-6):782-791
To investigate the importance of the overall size of the total adenine nucleotide pool for the regulation of primary metabolism in growing potato tubers, freshly cut discs were provided with zero or 2 mM adenine in the presence of 1 or 100 mM [U-14C]glucose or 100 mM [U-14C]sucrose in the presence and absence of 20 mM orthophosphate (Pi). Adenine led to a 150–250% increase of the total adenine nucleotide pool, which included an increase of ADP, a larger increase of ATP and an increase of the ATP:ADP ratio. There was a 50–100% increase of ADP-glucose (ADPGlc), and starch synthesis was stimulated. Respiratory oxygen uptake was stimulated, and the levels of glycerate-3-phosphate, phosphoenolpyruvate and α-ketoglutarate decreased. The response to adenine was not modified by Pi. It is proposed that increased ATP stimulates ADPGlc pyrophosphorylase, leading to a higher rate of starch synthesis. The impact on starch synthesis is constrained, however, because increased ADP can lead to a stimulation of respiration and decline of glycerate-3-phosphate, which will inhibit ADPGlc pyrophosphorylase. The quantitative impact depends on the conditions. In the presence of 1 mM glucose, the levels of phosphorylated intermediates and the rate of starch synthesis were low. Adenine led to a relatively large stimulation of respiration, but only a small stimulation of starch synthesis. In the presence of 100 mM glucose, discs contained high levels of phosphorylated intermediates, low ATP:ADP ratios (<3) and low rates of starch synthesis (<20% of the metabolised glucose). Adenine led to marked increase of ATP and 2- to 4-fold stimulation of starch synthesis. Discs incubated with 100 mM sucrose already had high ATP:ADP ratios (>8) and high rates of starch synthesis (>50% of the metabolised sucrose). Adenine led to a further increase, but the stimulation was less marked than in high glucose. These results have implications for the function of nucleotide cofactors in segregating sucrose mobilisation and respiration, and the need for energy conservation during sugar-starch conversions. Received: 9 February 2000 / Accepted: 9 June 2000  相似文献   

10.
A chlorophyllous, photomixotrophic cell suspension culture oftobacco (Nicotiana tabacum L.) was established using mediumcontaining 30 g/liter of sucrose and 1.5 µM 2,4-D. The2,4-D-sustained photomixotrophic line was able to show rapidregreening in the light after bleaching in the dark and characterizedwith a much slower and longer growth cycle than a heterotrophicline derived from the same original callus (cell doubling timeof 100 h vs. 40 h and duration of logarithmic phase of 17 daysvs. 7 days). The photomixotrophic line took up sucrose morerapidly than the heterotrophic line and accumulated starch duringthe early logarithmic phase when it showed a maximum photosyntheticcapacity on a chlorophyll basis (6.3µmol O2/min/mg Chl).Chlorophyll content and photosynthetic capacity on a per cellbasis and on a cell fresh weight basis, on the other hand, decreasedduring this phase and reincreased later to reach maximum levels(310 µg Chl/g fr wt; 1.4 µmol O2/min/g fr wt) whenthe line exhibited the highest activities of dark respiration(1.0 µmol; O2/min/g fr wt) and cell division (mitoticindex of 3.0%). These characteristics of the photomixotrophicline were lost if it was grown in the dark to become non-chlorophyllous.Although net O2 evolution could not be detected in the photomixotrophicline throughout the growth cycle when assayed under suboptimumlight intensity, reaccumulation of starch and a marked increasein cell fresh weight upon addition of minerals, vitamins and2,4-D without sucrose at the late logarithmic phase indicatedthe development of photosynthetic activity under the cultureconditions. 1The investigations reported were included in the thesis submittedto the Graduate School, Faculty of Agriculture, Kobe University,in partial fulfillment of the requirement for M. Agr. degree. (Received May 30, 1988; Accepted October 5, 1988)  相似文献   

11.
Temperature requirements for growth, photosynthesis and dark respiration were determined for five Antarctic red algal species. After acclimation, the stenothermal species Gigartina skottsbergii and Ballia callitricha grew at 0 or up to 5 °C, respectively; the eurythermal species Kallymenia antarctica, Gymnogongrus antarcticus and Phyllophora ahnfeltioides grew up to 10 °C. The temperature optima of photosynthesis were between 10 and 15 °C in the stenothermal species and between 15 and 25 °C in the eurythermal species, irrespective of the growth temperature. This shows that the temperature optima for photosynthesis are located well below the optima from species of other biogeographical regions, even from the Arctic. Respiratory rates rose with increasing temperatures. In contrast to photosynthesis, no temperature optimum was evident between 0 and 25 °C. Partial acclimation of photosynthetic capacity to growth temperature was found in two species. B. callitricha and Gymnogongrus antarcticus acclimate to 0 °C, and 5 and 0 °C, respectively. But acclimation did in no case lead to an overall shift in the temperature optimum of photosynthesis. B. callitricha and Gymnogongrus antarcticus showed acclimation of respiration to 5 °C, and P. ahnfeltioides to 5 and 10 °C, resulting in a temperature independence of respiration when measured at growth temperature. With respect to the acclimation potential of the species, no distinction can be made between the stenothermal versus the eurythermal group. (Net)photosynthetic capacity:respiration (P:R) ratios showed in all species highest values at 0 °C and decreased continuously to values lower than 1.0 at 25 °C. In turn, the low P:R ratios at higher temperatures are assumed to determine the upper temperature growth limit of the studied species. Estimated daily carbon balance reached values between 4.1 and 30.7 mg C g−1 FW day−1 at 0 °C, 16:8 h light/dark cycle, 12–40 μmol m−2 s−1. Received: 4 November 1999 / Accepted: 7 March 2000  相似文献   

12.
Rates of net photosynthesis and dark respiration were measured for detached needles ofPinus pumila trees growing on the Kiso mountain range in central Japan in 1987. Dependency of photosynthesis on light and temperature was examined in relation to needle age and season. The light saturation point of net photosynthesis was lower in 3- and 4-yr-old needles than that in current (flushed in 1987), 1- and 2-yr-old needles.P nmax, net photosynthetic rates at 1000 μmol m−2 s−1 and 15°C, of needles from 1- to 4-yr-old generally decreased with needle age.P nmax of 1- to 4-yr-old needles became higher in August than in other months, andP nmax of current needles did so in September. Current needles showed high respiration rates (at 15°C) only in August. Optimum air temperatures for net photosynthesis at 1000 μmol m−2 s−1 were between 10 and 15°C for current and 1-yr-old needles. The temperature coefficient of dark respiration rates was 2.3–3.3 for current needles from August to October, and 2.2 for 1-yr-old needles in mid-July.  相似文献   

13.
In comparison with its wild type (WT), the transgenic (TG) rice with silenced OsBP-73 gene had significantly lower plant height, grain number per panicle, and leaf net photosynthetic rate (P N). Also, the TG rice showed significantly lower chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), RuBPCO activase, and RuBP contents, photosystem 2 (PS2) photochemical efficiency (Fv/Fm and ΔF/Fm′), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), photosynthetic electron transport and photophosphorylation rates as well as sucrose phosphate synthase activity, but higher intercellular CO2 concentration, sucrose, fructose, and glycerate 3-phosphate contents, and non-photochemical quenching of Chl fluorescence (NPQ). Thus the decreased P N in the TG rice leaves is related to both RuBP carboxylation and RuBP regeneration limitations, and the latter is a predominant limitation to photosynthesis.  相似文献   

14.
M. Tretiach  A. Geletti 《Oecologia》1997,111(4):515-522
CO2 exchange of the endolithic lichen Verrucaria baldensis was measured in the laboratory under different conditions of water content, temperature, light, and CO2 concentration. The species had low CO2 exchange rates (maximum net photosynthesis: c. 0.45 μmol CO2 m−2 s−1; maximum dark respiration: c. 0.3 μmol CO2 m−2 s−1) and a very low light compensation point (7 μmol photons m−2 s−1 at 8°C). The net photosynthesis/respiration quotient reached a maximum at 9–15°C. Photosynthetic activity was affected only after very severe desiccation, when high resaturation respiratory rates were measured. Microclimatic data were recorded under different weather conditions in an abyss of the Trieste Karst (northeast Italy), where the species was particularly abundant. Low photosynthetically active radiation (normally below 40 μmol photons m−2 s−1), very high humidities (over 80%), and low, constant temperatures were measured. Thallus water contents sufficient for CO2 assimilation were often measured in the absence of condensation phenomena. Received: 22 September 1996 / Accepted: 26 April 1997  相似文献   

15.
Growth, biomass allocation, and photosynthetic characteristics of seedlings of five invasive non-indigenous and four native species grown under different light regimes were studied to help explain the success of invasive species in Hawaiian rainforests. Plants were grown under three greenhouse light levels representative of those found in the center and edge of gaps and in the understory of Hawaiian rainforests, and under an additional treatment with unaltered shade. Relative growth rates (RGRs) of invasive species grown in sun and partial shade were significantly higher than those for native species, averaging 0.25 and 0.17 g g−1 week−1, respectively, while native species averaged only 0.09 and 0.06 g g−1 week−1, respectively. The RGR of invasive species under the shade treatment was 40% higher than that of native species. Leaf area ratios (LARs) of sun and partial-shade-grown invasive and native species were similar but the LAR of invasive species in the shade was, on average, 20% higher than that of native species. There were no differences between invasive and native species in biomass allocation to shoots and roots, or in leaf mass per area across light environments. Light-saturated photosynthetic rates (Pmax) were higher for invasive species than for native species in all light treatments. Pmax of invasive species grown in the sun treatment, for example, ranged from 5.5 to 11.9 μmol m−2 s−1 as compared with 3.0−4.5 μmol m−2 s−1 for native species grown under similar light conditions. The slope of the linear relationship between Pmax and dark respiration was steeper for invasive than for native species, indicating that invasive species assimilate more CO2 at a lower respiratory cost than native species. These results suggest that the invasive species may have higher growth rates than the native species as a consequence of higher photosynthetic capacities under sun and partial shade, lower dark respiration under all light treatments, and higher LARs when growing under shade conditions. Overall, invasive species appear to be better suited than native species to capturing and utilizing light resources, particularly in high-light environments such as those characterized by relatively high levels of disturbance. Received: 30 December 1997 / Accepted: 1 September 1998  相似文献   

16.
Net photosynthesis and dark respiration (CO2 flux) of Antarctic mosses were measured at Langhovde, East Antarctica, from 9 to 17 January 1988. Moss blocks were taken from communities in the Yukidori Valley (69°14′30″S, 39°46′00″E) at Langhovde. Each block was composed ofCeratodon purpureus andBryum pseudotriquetrum, orB. pseudotriquetrum. The upper part of the block was used to measure net photosynthesis and dark respiration. The net photosynthesis of each sample was measured in the field for one or three days with two infrared CO2 gas analyzers and an assimilation chamber. The relationships of net photosynthetic rate and dark respiration rate, to the water content of the sample, the intensity of solar radiation and the moss temperature were estimated from the field data. The maximum rate of net photosynthesis was about 4 μmol CO2 m−2s−1 at saturating radiation intensity and at optimum temperature, about 10°C. Environmental features of moss habitats in the Yukidori Valley are discussed in relation to these results.  相似文献   

17.
When nitrogen fixing cell cultures of Synechococcus RF-1 were subjected to an alternating lightdark regime (12 h:12 h), a cyclic decrease in the photosynthetic oxygen evolution potential was observed during the dark periods. This rhythm of net photosynthesis rate was maintained for at least two days after transition to continuous light. The decrease in net photosynthesis was accompanied by a stimulation of dark respiration. However, the magnitude of oxygen uptake was considerably smaller than the observed decrease in oxygen evolution. The photosynthetic activity of cells taken from the dark period was characterized by (i) a significantly lower quantum yield and (ii) a strong reduction in the light-saturated rate of photosynthesis. Growing the cultures on nitrate or under continuous light completely suppressed this rhythm. Protein synthesis was not necessary for the recovery of the light-saturated rate of photosynthesis during the light period. The cellular content of chlorophyll a and of phycobiliproteins did not vary between light and dark period, indicating that quantitative changes in the composition of the photosynthetic apparatus are not the basis for the observed oscillations. Regulatory modifications of the photosynthetic efficiency are proposed as an adaptation mechanism to adjust the intracellular oxygen concentration to the needs for nitrogenase activity.Abbreviation Chl chlorophyll  相似文献   

18.
A recurring theme in defense allocation theories is that defenses are costly. Most studies that attempt to quantify a cost of defense seek to establish a trade-off between a component of plant fitness and the level of a constitutive defense. Such estimates are ambiguous because they cannot discount the cost of traits that are correlated with defense but are not themselves defensive. We examined the effects of damage-induced synthesis of furanocoumarins, known defense compounds, on the growth of wild parsnip. Plants that had 2% of their leaf area removed accumulated 8.6% less total biomass and 14% less root biomass than intact plants over a 4-week period. We also found that this small amount of leaf damage significantly reduced net photosynthetic rates 0.5 h after damage; the effect was temporary, as photosynthetic rates were no longer significantly different after 48 h. Lastly, we found that increases in respiration rates associated with damage coincided spatially and temporally with increases in furanocoumarin production, and that respiration increases were phenotypically correlated with furanocoumarin production. When damage-induced changes in furanocoumarin content and respiration rates were expressed in glucose equivalents and compared, the energetic cost of furanocoumarin production (12.6 μg glucose cm−2) accounted for all of the increase in respiration (12.0 μg glucose cm−2). A comparison of other secondary compounds in damaged and intact leaflets revealed that myristicin, a furanocoumarin synergist, is the only other compound aside from furanocoumarins that is inducible. The inducible defense system of wild parsnip thus appears to involve a small subset of secondary compounds. Synthesis of these compounds is tightly linked to damage-induced rates of respiration. Because the negative impact that damage had on the rate of net photosynthesis was short-lived, the impact of damage on growth observed in this study was likely due to the cost of furanocoumarin synthesis elicited by damage rather than the loss of photosynthetic tissue caused by damage. Received: 4 April 1996 / Accepted: 29 August 1996  相似文献   

19.
经诱导得到胡萝卜光自养型愈伤组织。以叶绿素为单位计算,获得的光自养型愈伤组织的光合活力达到甚至超过了整体植株叶片水平。同时测定愈伤组织光自养过程中光合特性的变化,结果表明其叶绿素含量逐渐上升、暗呼吸速率和Chl a/Chl b比值逐渐下降。并且用电子显微镜观察到愈伤组织中叶绿体结构逐渐发育的过程。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号