首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S A Joseph  G J Michael 《Peptides》1988,9(1):193-201
The distribution of opiocortin (OR-ir) immunoreactive fibers was examined immunocytochemically throughout the brain in rats following surgical isolation of the arcuate opiocortin-ir neuronal pool in the medial basal hypothalamus (MBH). Fibers which emanate from this pool were completely severed and thus eliminated from the rest of the brain, leaving intact those which can be identified immunocytochemically as opiocortin-ir projections from the medullary pool located in the nucleus tractus solitarius (NTS). These studies reveal a unique organizational pattern of proopiomelanocortin (POMC) peptidergic neuronal systems and demonstrate that several pontine and medullary regions receive projections from both the hypothalamic (arcuate) and medullary (NTS) opiocortin-ir perikarya. Comparative analyses of deafferented and control brains reveal that certain brainstem autonomic centers such as parabrachial (PB), locus coeruleus (LC), nucleus paragiganticellularis (PGi) are recipients of fibers which emanate from both arcuate and NTS opiocortin-ir perikarya. Areas which receive projections from arcuate opiocortin-ir neurons alone include forebrain and hypothalamic nuclei as well as the periaqueductal grey.  相似文献   

2.
肾缺血引起大鼠儿茶酚胺神经元Fos表达   总被引:2,自引:1,他引:1  
Ding YF 《生理学报》2001,53(6):445-450
实验应用Fos蛋白和酪氨酸羟化酶(tyrosine hydroxylase,TH)的双重免疫组化方法,观察肾脏动脉阻断(renal artery occlusion,RAO)是否激活脑干中核团的儿荷酚胺能神经元。所得结果如下:(1)脑干中Fos样蛋白的基础性表达低;RAO可诱发孤束核(nucleus tractus solitarius,NTS)、最后区(area postrema,AP)、巨细胞旁外侧核(paragi-gantocellularis lateralis,PGL)和蓝斑(locus coeruleus,LC)核团中许多神经元显示Fos样免疫反应(Fos-like immunoreactivi-ty,FLI)。(2)NTS、AP、PGL和LC核团中含有较多的儿茶酚胺能神经元;RAO能激活其中的部分儿荷酚胺能神经元。(3)腺苷受体阻断剂8-苯茶碱可明显减弱RAO所致的上述效应。以上结果表明,肾脏短暂缺血能激活脑干内的一些神经核团以及其中的部分儿荷酚胺能神经元。此效应可能是肾缺血时腺苷释放作用于肾内腺苷受体后引起肾传入神经活动增加的结果。  相似文献   

3.
Participation of the nucleus paragigantocellularis (PGi) in mediation of opioid withdrawal was examined in conscious, unrestrained, non-opioid-dependent rats, using electrical stimulation of the PGi. A characteristic series of behaviors, which resembled those seen during naloxone-precipitated withdrawal from dependence on the opioid agonist, butorphanol, was elicited during 30 min of PGi stimulation. Thus, the behavioral syndrome has been termed opioid withdrawal-like. Simultaneous microdialysis measurement of glutamate within the locus ceruleus indicated a positive correlation between extracellular glutamate concentrations and behavioral responses. Behavioral responses were inhibited by 50% during reverse dialysis perfusion of the locus ceruleus with the glutamate receptor antagonist, kynurenic acid, without any effect on glutamate concentrations. Thus, increases in locus ceruleus glutamate partially mediate opioid withdrawal-like behavior. Intracerebroventricular (i.c.v.) injections of the opioid antagonist, naloxone, or of the mu-selective (beta-funaltrexamine) or the delta-selective (naltrindole) opioid antagonists decreased, but did not abolish, stimulation-induced behavioral responses. Similar i.c.v. injections of the kappa-selective antagonist, nor-binaltorphimine, had no effect on behavioral responses to PGi stimulation. Activation of the PGi by electrical stimulation can elicit behaviors similar to those observed during opioid withdrawal. Moreover, additional levels of complexity are evident in the neuropharmacology of PGi stimulation-induced opioid withdrawal-like behavior.  相似文献   

4.
Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.  相似文献   

5.
Magnocellular neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) display bursting activity that is synchronized under certain conditions. They receive excitatory synaptic inputs from intrahypothalamic glutamate circuits, some of which are activated by norepinephrine. Ascending noradrenergic afferents and intrahypothalamic glutamate circuits may be responsible for the generation of synchronous bursting among oxytocin neurons and/or asynchronous bursting among vasopressin neurons located in the bilateral supraoptic and paraventricular nuclei. Here, we tested whether magnocellular neurons of the PVN receive excitatory synaptic input from the contralateral PVN and the region of the retrochiasmatic SON (SONrx) via norepinephrine-sensitive internuclear glutamate circuits. Whole cell patch-clamp recordings were performed in PVN magnocellular neurons in coronal hypothalamic slices from male rats, and the ipsilateral SONrx region and contralateral PVN were stimulated using electrical and chemical stimulation. Electrical and glutamate microdrop stimulation of the ipsilateral SONrx region or contralateral PVN elicited excitatory postsynaptic potentials/currents (EPSP/Cs) in PVN magnocellular neurons mediated by glutamate release, revealing internuclear glutamatergic circuits. Microdrop application of norepinephrine also elicited EPSP/Cs, suggesting that these circuits could be activated by activation of noradrenergic receptors. Repetitive electrical stimulation and drop application of norepinephrine, in some cases, elicited bursts of action potentials. Our data reveal glutamatergic synaptic circuits that interconnect the magnocellular nuclei and that can be activated by norepinephrine. These internuclear glutamatergic circuits may provide the functional architecture to support burst generation and/or burst synchronization in hypothalamic magnocellular neurons under conditions of activation.  相似文献   

6.
We previously demonstrated that morphine withdrawal induced hyperactivity of the hypothalamus-pituitary-adrenocortical axis by activation of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN), as evaluated by Fos expression and corticosterone release. The present study was designed to investigate the role of protein kinase C (PKC) in this process by estimating changes in PKCalpha and PKCgamma immunoreactivity, and whether pharmacological inhibition of PKC would attenuate morphine withdrawal-induced c-Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and nucleus tractus solitarius/ ventrolateral medulla (NTS/VLM). Dependence on morphine was induced in rats by 7 day s.c. implantation of morphine pellets. Morphine withdrawal was induced on day 8 by an injection of naloxone. The protein levels of PKCalpha and gamma were significantly down-regulated in the PVN and NTS/VLM from the morphine-withdrawn rats. Morphine withdrawal induced c-Fos expression in the PVN and NTS/VLM, indicating an activation of neurons in those nuclei. TH immunoreactivity was increased in the NTS/VLM after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN. Infusion of calphostin C, a selective protein kinase C inhibitor, produced a reduction in the morphine withdrawal-induced c-Fos expression. Additionally, the changes in TH levels in the PVN and NTS/VLM were significantly modified by calphostin C. The present results suggest that activated PKC in the PVN and catecholaminergic brainstem cell groups may be critical for the activation of the hypothalamic-pituitary adrenocortical axis in response to morphine withdrawal.  相似文献   

7.
Xue BJ  Zhang XX  Ding YF  Shi GM  He RR 《生理学报》2001,53(1):66-71
实验采用NADPH-d组化技术和Fos蛋白免疫组化技术相结合的方法,观察了颈动脉注射辣椒不时,大鼠脑干心血管相关核团内NOS和Fos蛋白的分布以及两者的共存关系。结果显示:(1)颈动脉注射辣椒不可诱发脑干中最后区(AP)、孤束核(NTS)、巨细胞旁外侧核(PGL)和蓝斑(LC)等多个部位Fos样免疫反应(FLI)神经元显著增加 中脑中央灰质(PAG)和中缝核群(RN)的FLI神经元无明显改变。(2)PGL和NTS内NO合成神经元以及PGL内双标神经元数量也明显增加,而AG和RN中NO合成神经元无明显变化,在LC和AP仅偶见或未见NO合成神经元。(3)预先应用辣椒素受体阻断剂钌红或NMDA受体阻断剂MK-801,则明显减弱辣椒素的上述效应,以上结果表明,颈动脉注射辣椒素可兴奋脑干心血管活动相关核团神经元,NO在脑干核团对辣椒素的反应中发挥间接的调制作用,辣椒素的效应由香草酸受体(辣椒素受体)介导并有谷氨酸参与。  相似文献   

8.
TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS). TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST) afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs) under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 μs) that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM) blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5) direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.  相似文献   

9.
Cerebral monoamine neurotransmitters in opioid withdrawal and dependence   总被引:1,自引:0,他引:1  
L Ahtee  L M Attila 《Medical biology》1987,65(2-3):113-119
The functioning of cerebral monoaminergic neurons is altered during withdrawal from morphine. Our results suggest that the functioning of cerebral dopaminergic and possibly 5HTergic neurons might be regulated by opioid mechanisms and these neurons may be important in the reinforcing and rewarding effects of morphine. The limbic dopaminergic neurons seem to be more vulnerable to chronic opioid administration than the striatal ones. The cerebral noradrenergic neurons seem to be linked with physical signs and symptoms of opioid withdrawal.  相似文献   

10.
Abstract: There appear to be two anatomically distinct β-endorphin (βE) pathways in the brain, the major one originating in the arcuate nucleus of the hypothalamus and a smaller one in the area of the nucleus tractus solitarius (NTS) of the caudal medulla. Previous studies have shown that these two proopiomelanocortin (POMC) systems may be differentially regulated by chronic morphine treatment, with arcuate cells down-regulated and NTS cells unaffected. In the present experiments, we examined the effects of chronic opiate antagonist treatment on βE biosynthesis across different CNS regions to assess whether the arcuate POMC system would be regulated in the opposite direction to that seen after opiate agonist treatment and to determine whether different βE-containing areas might be differentially regulated. Male adult rats were administered naltrexone (NTX) by various routes for 8 days (subcutaneous pellets, osmotic minipumps, or repeated intraperitoneal injections). Brain and spinal cord regions were assayed for total βE-ir, different molecular weight immunoreactive β-endorphin (βE-ir) peptides, and POMC mRNA. Chronic NTX treatment, regardless of the route of administration, reduced total βE-ir concentrations by 30–40% in diencephalic areas (the arcuate nucleus, the remaining hypothalamus, and the thalamus) and the midbrain, but had no effect on βE-ir in the NTS or any region of the spinal cord. At the same time, NTX pelleting increased POMC mRNA levels in the arcuate to ~ 140% of control values. These data suggest that arcuate POMC neurons are up-regulated after chronic NTX treatment (whereas NTS and spinal cord systems remain unaffected) and that they appear to be under tonic inhibition by endogenous opioids. Chromatographic analyses demonstrated that, after chronic NTX pelleting, the ratio of full length βE1–31 to more processed βE-ir peptides (i.e., βE1–27 and βE1–26) tended to increase in a dose-dependent manner in diencephalic areas. Because βE1–31 is the only POMC product that possesses opioid agonist properties, and βE1–27 has been posited to function as an endogenous anatgonist of βE1–31, the NTX-induced changes in the relative concentrations of βE1–31 and βE1–27/βE1–26 may represent a novel regulatory mechanism of POMC cells to alter the opioid signal in the synapse.  相似文献   

11.
Neurons in the medullary raphe are critical to opioid analgesia through descending projections to the dorsal horn. Work in anesthetized rats led to the postulate that nociceptive suppression results from tonic activation of nociceptive-inhibiting neurons and tonic inhibition of nociceptive-facilitating neurons. However, morphine does not cause tonic changes in raphe neuronal firing in unanesthetized rodents. Recent work suggests that a drop in activity of nociceptive-inhibiting neurons synchronizes nociceptive circuits and a burst of activity in nociceptive-facilitating neurons facilitates withdrawal magnitude. After morphine, the phasic responses of raphe cells are suppressed along with nociceptive withdrawals. The results suggest a new model of brainstem modulation of nociception in which the medullary raphe facilitates nociceptive reactions when noxious input occurs and may modulate other functions between injurious events.  相似文献   

12.
Currently, opioid-based drugs are the most effective pain relievers that are widely used in the treatment of pain. However, the analgesic efficacy of opioids is significantly limited by the development of tolerance after repeated opioid administration. Glutamate receptors have been reported to critically participate in the development and maintenance of opioid tolerance, but the underlying mechanisms remain unclear. Using whole-cell voltage-clamp recordings in brainstem slices, the present study investigated chronic morphine-induced adaptations in glutamatergic synaptic transmission in neurons of the nucleus raphe magnus (NRM), a key supraspinal relay for pain modulation and opioid analgesia. Chronic morphine significantly increased glutamate synaptic transmission exclusively in one class of NRM cells that contains μ-opioid receptors in a morphine-tolerant state. The adenylyl cyclase activator forskolin and the cAMP analog 8-bromo-cAMP mimicked the chronic morphine effect in control neurons and their potency in enhancing the glutamate synaptic current was significantly increased in neurons from morphine-tolerant rats. MDL12330a, an adenylyl cyclase inhibitor, and H89, a protein kinase A (PKA) inhibitor, reversed the increase in glutamate synaptic transmission induced by chronic morphine. In addition, PMA, a phorbol ester activator of protein kinase C (PKC), also showed an increased potency in enhancing the glutamate synaptic current in these morphine-tolerant cells. The PKC inhibitor GF109203X attenuated the chronic morphine effect. Taken together, these results suggest that chronic morphine increases presynaptic glutamate release in μ receptor-containing NRM neurons in a morphine-tolerant state, and that the increased glutamate synaptic transmission appears to involve an upregulation of both the cAMP/PKA pathway and the PKC pathway. This glutamate-mediated activation of these NRM neurons that are thought to facilitate spinal pain transmission may contribute to the reduced opioid analgesia during opioid tolerance.  相似文献   

13.
The endogenous opioid peptides have been implicated in mediating the actions of estrogen and progesterone on GnRH release. We used in situ hybridization histochemistry to determine whether steroid-induced changes in GnRH/LH release in the female sheep are associated with changes in the cellular mRNA content of the precursors for beta-endorphin (pro-opiomelanocortin; POMC) and met-enkephalin (pre-proenkephalin; PENK). Two specific hypotheses were tested. First, that the inhibitory actions of progesterone are associated with an increase in opioid gene expression in specific hypothalamic nuclei. Our data support this hypothesis. Thus, an increase in progesterone was associated with increased POMC gene expression in the arcuate nucleus and PENK in the paraventricular nucleus. Further, the increase in POMC was restricted to regions of the arcuate nucleus that contain steroid sensitive beta-endorphin neurons. Our second hypothesis, that gene expression for the two opioid precursors would decrease prior to the start of the estradiol-stimulated GnRH surge, was not supported. Rather, POMC (but not PENK) gene expression in the arcuate nucleus was significantly higher in estradiol-treated animals than controls at the peak of the GnRH surge. These data suggest that beta-endorphin neurons in subdivisions of the arcuate nucleus and enkephalin neurons in the paraventricular nucleus are part of the neural network by which progesterone inhibits LH release. While enkephalin neurons may not play a role in estrogen positive feedback, increases in POMC mRNA in the arcuate nucleus at the time of the GnRH peak may be important for replenishing beta-endorphin stores and terminating estrous behavior.  相似文献   

14.
Recent studies have led to a greater understanding of the behavioral, cellular, and molecular mechanisms underlying opiate tolerance and physical dependence. Behavioral studies have demonstrated that both direct pharmacological effects and the learning of interactions between drug effects and environmental cues are important in these phenomena. Behavioral studies have also revealed that N-methyl-D-aspartate receptors may play a role in their development (or acquisition). Although in early cellular studies no consistent role was found for opioid receptors or endogenous opioid peptides in opiate tolerance and dependence, recent experiments suggest that beta-endorphin, enkephalin, and dynorphin neurons may indeed have a role. Finally, studies at the molecular level suggest that a functional decoupling of opioid receptors from GTP-binding proteins (G proteins) may be important. In this review, we discuss these disparate findings and present a synthesis that shows how they might together contribute to the phenomena of opiate tolerance and physical dependence.  相似文献   

15.
HJ Grill  MR Hayes 《Cell metabolism》2012,16(3):296-309
This Review highlights the processing and integration performed by hindbrain nuclei, focusing on the inputs received by nucleus tractus solitarius (NTS) neurons. These inputs include vagally mediated gastrointestinal satiation signals, blood-borne energy-related hormonal and nutrient signals, and descending neural signals from the forebrain. We propose that NTS (and hindbrain neurons, more broadly) integrate these multiple energy status signals and issue-output commands controlling the behavioral, autonomic, and endocrine responses that collectively govern energy balance. These hindbrain-mediated controls are neuroanatomically distributed; they involve endemic hindbrain neurons and circuits, hindbrain projections to peripheral circuits, and projections to and from midbrain and forebrain nuclei.  相似文献   

16.
Unilateral microinjections of -MSH (0.3, 1.2 and 12 pmol) into the nucleus tractus solitarius (NTS) of urethane-anaesthetized rats did not modify blood pressure or heart rate (HR). Using a dual microinjection technique, it has been shown that prior injection of -MSH (0.3 pmol) attenuated the pressor effect of a similar injection of dynorphin 1–9 (18 pmol) but did not modify the cardiovascular effects of [Met]enkephalin (14 pmol). Since -MSH has been localized in the NTS, the results indicate that this peptide may play a role in central cardiovascular control, possibly acting in an antagonistic manner to the endogenous opioid peptides.  相似文献   

17.
Neonatal treatment of rats with monosodium glutamate (MSG) has been demonstrated to destroy cell bodies of neurons in the arcuate nucleus including the brain beta-endorphin (B-END) system. The effects on opiate receptors of the loss of B-END is unknown. Neonatal rats were treated with MSG as previously described. After reaching maturity (7-9 months), MSG-treated rats and litter-matched untreated control rats were decapitated and brains dissected into brain regions. Opiate receptor assays were run with [3H]morphine (mu receptor ligand) and [3H]D-alanine2-D-leucine5 (DADL) enkephalin (delta receptor ligand) for each brain region for both MSG and control rats simultaneously. Scatchard plot analyses showed a selective increase in delta receptors in the thalamus only. No corresponding change in mu receptors in the thalamus was found. The cross-competition IC50 data supported this conclusion, showing a loss in the potency of morphine in displacing [3H]DADL enkephalin in the thalamus of MSG-treated rats. This shift in delta receptors produced an IC50 displacement pattern in thalamus, ordinarily a mu-rich area, similar to that of striatum or cortex, delta-rich areas, again indicating an increase in delta receptors. Similar changes in delta receptors in other brain regions were not found. These results represent one of the few examples of a selective and localized shift in delta with no change in mu sites. Furthermore, the delta increase may reflect an up-regulation of the receptors in thalamus after chronic loss of the endogenous opioid B-END.  相似文献   

18.
To determine whether the hyperactivity of noradrenergic neurons that occurs during opiate withdrawal might be associated with a reciprocal alteration in noradrenergic receptor response, isoproterenol-stimulated adenylate cyclase activity was examined in the cerebella of morphine-addicted monkeys at two time periods: a) prior to withdrawal, and b) during late withdrawal. Compared to controls, the chronically-addicted group showed a significant increase in maximal enzyme velocity, a finding consistent with the observed hypoactivity of noradrenergic neurons which occurs during opiate administration. In contrast, the morphine withdrawal group demonstrated a significant decrease in enzyme activity. Piperoxan, known to mimic the effects of withdrawal in causing noradrenergic hyperactivity, also decreased enzyme activity. In no group was there a change in Ka for isoproterenol. These findings, indicating that opiate withdrawal is associated with a subsensitivity of noradrenergic receptor response, suggest a possible etiology for certain of the physiological changes of noradrenergic hypoactivity seen during the secondary (or protracted) abstinence syndrome.  相似文献   

19.
Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aortic depressor nerve (ADN) with lipophilic fluorescent tracer (i.e., ADN+) and measured synaptic responses to solitary tract (ST) activation recorded from dye-identified neurons in medial NTS in horizontal brain stem slices. Every ADN+ NTS neuron received constant-latency ST-evoked excitatory postsynaptic currents (EPSCs) (jitter < 192 micros, SD of latency). Stimulus-recruitment profiles showed single thresholds and no suprathreshold recruitment, findings consistent with EPSCs arising from a single, branched afferent axon. Frequency-dependent depression of ADN+ EPSCs averaged approximately 70% for five shocks at 50 Hz, but single-shock failure rates did not exceed 4%. Whether adjacent ADN- or those from unlabeled animals, other second-order NTS neurons (jitters < 200 micros) had ST transmission properties indistinguishable from ADN+. Capsaicin (CAP; 100 nM) blocked ST transmission in some neurons. CAP-sensitive ST-EPSCs were smaller and failed over five times more frequently than CAP-resistant responses, whether ADN+ or from unlabeled animals. Variance-mean analysis of ST-EPSCs suggested uniformly high probabilities for quantal glutamate release across second-order neurons. While amplitude differences may reflect different numbers of contacts, higher frequency-dependent failure rates in CAP-sensitive ST-EPSCs may arise from subtype-specific differences in afferent axon properties. Thus afferent transmission within medial NTS differed by axon class (e.g., CAP sensitive) but was indistinguishable by source of axon (e.g., baroreceptor vs. nonbaroreceptor).  相似文献   

20.
S J Cooper 《Life sciences》1983,32(10):1043-1051
Benzodiazepines reliably produce overconsumption of food and fluids. Opiate antagonists, naloxone and naltrexone, block the benzodiazepine-induced hyperphagia and hyperdipsia at low doses. Hence, activation of endogenous opioid mechanisms may be closely involved in the benzodiazepine facilitatory effects on ingestional behavior. Evidence is reviewed that opiate antagonists diminish feeding and drinking responses, and may enhance satiety processes in feeding and drinking, in addition to selectively diminishing the palatability of attractive foods and fluids. It is proposed that a single mechanism of action of the opiate antagonists would be sufficient to account for both effects on feeding and drinking. Biochemical data confirm that acute benzodiazepine treatment in vivo is associated with a naloxone-reversible release of striatal enkephalin. It is possible therefore that there is a close association between the behavioral and biochemical data, which both show that acute benzodiazepine effects are reversed by opiate antagonists. The implied relationship between benzodiazepine and endogenous opioid mechanisms may be relevant to the question of concurrent opiate-benzodiazepine abuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号