首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 14-3-3 family of proteins function as small adaptors that facilitate a diverse array of cellular processes by mediating specific protein interactions. One such process is the DNA damage checkpoint, where these proteins prevent inappropriate activation of cyclin-dependent kinases. The filamentous fungus Aspergillus nidulans possesses a highly conserved 14-3-3 homologue (artA) that may function in an analogous manner to prevent septum formation. However, instead of blocking septation, over-expression of artA causes a severe delay in the polarization of conidiospores. This observation suggests that these proteins play an important role in hyphal morphogenesis.  相似文献   

2.
韩群  秦亚玲  李德峰 《生物工程学报》2021,37(10):3439-3458
多环芳烃是一种常见的持久性有机污染物,因具有致癌、致突变等毒性而被广泛关注。其微生物降解过程通常由羟化起始,随后脱氢、开环、一步步去除支链,最终进入三羧酸循环。Rieske 非血红素铁环羟化酶(Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases , RHOs , 又称 aromatic ring-hydroxylating dioxygenases) 或细胞色素 P450 氧化酶负责将羟基加成到多环芳烃环上,将疏水性的多环芳烃转化为亲水性的衍生物,这一过程是多环芳烃降解转化的起始步骤,也是关键步骤和限速步骤之一。文中主要介绍 RHOs 的分布、底物特异性、底物识别机制以及研究 RHOs 与多环芳烃的一些技术和方法等,并对 RHOs 在环境修复技术中的潜在应用进行了展望。  相似文献   

3.
Bacterial community compositions were characterized using denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene in the sediments of the Pearl River estuary. Sequencing analyses of the excised bands indicated that Gram-negative bacteria, especially Gammaproteobacteria, were dominant in the Pearl River estuary. The diversity of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD) gene in this estuary was then assessed by clone library analysis. The phylogenetic analyses showed that all PAH-RHD gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to the nagAc gene described for Ralstonia sp. U2 or nahAc gene for Pseudomonas sp. 9816–4, while the PAH-RHD gene sequences of Gram-positive bacteria (PAH-RHD[GP]) at sampling site A1 showed high sequence similarity to the nidA gene from Mycobacterium species. Meanwhile, molecular diversity of the two functional genes was higher at the upstream of this region, while lower at the downstream. Redundancy analysis indicated that environmental factors, such as NH4-N, ∑PAHs, pH, SiO3-Si, and water depth, affected the distribution of the PAH-RHD[GN] gene in the Pearl River estuary.  相似文献   

4.
In this study, the enzymes involved in polycyclic aromatic hydrocarbon (PAH) degradation were investigated in the pyrene-degrading Mycobacterium sp. strain 6PY1. [(14)C]pyrene mineralization experiments showed that bacteria grown with either pyrene or phenanthrene produced high levels of pyrene-catabolic activity but that acetate-grown cells had no activity. As a means of identifying specific catabolic enzymes, protein extracts from bacteria grown on pyrene or on other carbon sources were analyzed by two-dimensional gel electrophoresis. Pyrene-induced proteins were tentatively identified by peptide sequence analysis. Half of them resembled enzymes known to be involved in phenanthrene degradation, with closest similarity to the corresponding enzymes from Nocardioides sp. strain KP7. The genes encoding the terminal components of two distinct ring-hydroxylating dioxygenases were cloned. Sequence analysis revealed that the two enzymes, designated Pdo1 and Pdo2, belong to a subfamily of dioxygenases found exclusively in gram-positive bacteria. When overproduced in Escherichia coli, Pdo1 and Pdo2 showed distinctive selectivities towards PAH substrates, with the former enzyme catalyzing the dihydroxylation of both pyrene and phenanthrene and the latter preferentially oxidizing phenanthrene. The catalytic activity of the Pdo2 enzyme was dramatically enhanced when electron carrier proteins of the phenanthrene dioxygenase from strain KP7 were coexpressed in recombinant cells. The Pdo2 enzyme was purified as a brown protein consisting of two types of subunits with M(r)s of about 52,000 and 20,000. Immunoblot analysis of cell extracts from strain 6PY1 revealed that Pdo1 was present in cells grown on benzoate, phenanthrene, or pyrene and absent in acetate-grown cells. In contrast, Pdo2 could be detected only in PAH-grown cells. These results indicated that the two enzymes were differentially regulated depending on the carbon source used for growth.  相似文献   

5.
Polycyclic aromatic hydrocarbon (PAH)-degrading genes nidA and nidB that encode the alpha and beta subunits of the aromatic ring-hydroxylating dioxygenase have been cloned and sequenced from Mycobacterium vanbaalenii PYR-1 [Khan et al., Appl. Environ Microbiol. 67 (2001) 3577-3585]. In this study, the presence of nidA and nidB in 12 other Mycobacterium or Rhodococcus strains was investigated. Initially, all strains were screened for their ability to degrade PAHs by a spray plate method, and for the presence of the dioxygenase Rieske center region by polymerase chain reaction (PCR). Only Mycobacterium sp. PAH 2.135 (RJGII-135), M. flavescens PYR-GCK (ATCC 700033), M. gilvum BB1 (DSM 9487) and M. frederiksbergense FAn9T (DSM 44346), all previously known PAH degraders, were positive in both tests. From the three positive strains, complete open reading frames of the nidA and nidB genes were amplified by PCR, using primers designed according to the known nidA and nidB sequences from PYR-1, cloned in the pBAD/Thio-TOPO vector and sequenced. The sequences showed >98% identity with the M. vanbaalenii PYR-1 nidA and nidB genes. Southern DNA-DNA hybridization using nidA and nidB probes from PYR-1 revealed that there is more than one copy of nidA and nidB genes in the strains PYR-1, BB1, PYR-GCK and FAn9T. However, only one copy of each gene was observed in PAH2.135.  相似文献   

6.
Ring-hydroxylating dioxygenases (RHDs) are of central importance to bacterial recycling of aromatic hydrocarbons, including anthropogenic pollutants. The database of presently characterized RHDs is biased towards those from organisms readily isolated on anthropogenic substrates. To investigate the extent to which RHDs from extant organisms reflect the natural diversity of these enzymes, we developed a polymerase chain reaction (PCR) method for retrieval of RHD gene fragments from environmental samples. Gene libraries from two contaminated and two pristine soil samples were constructed. None of the inferred peptides from clones examined were identical to previously described RHDs; however, all showed significant sequence homology and contained key catalytic residues. On the basis of sequence identity, the environmental clones clustered into six distinct groups, only one of which included known RHDs. One of the new sequence groupings was particularly widespread, being recovered from all soil samples tested. Comparison of inferred peptide sequences of the environmental clones and known RHDs showed the former to have greater sequence variation at sites thought to influence accessibility of the active site than that seen between currently known RHDs. We conclude that presently characterized RHDs do not adequately represent the diversity of function found in in situ forms.  相似文献   

7.
Ring-hydroxylating dioxygenases (RHDs) catalyze the initial oxidation step of a range of aromatic hydrocarbons including polycyclic aromatic hydrocarbons (PAHs). As such, they play a key role in the bacterial degradation of these pollutants in soil. Several polymerase chain reaction (PCR)-based methods have been implemented to assess the diversity of RHDs in soil, allowing limited sequence-based predictions on RHD function. In the present study, we developed a method for the isolation of PAH-specific RHD gene sequences of Gram-negative bacteria, and for analysis of their catalytic function. The genomic DNA of soil PAH degraders was labeled in situ by stable isotope probing, then used to PCR amplify sequences specifying the catalytic domain of RHDs. Sequences obtained fell into five clusters phylogenetically linked to RHDs from either Sphingomonadales or Burkholderiales. However, two clusters comprised sequences distantly related to known RHDs. Some of these sequences were cloned in-frame in place of the corresponding region of the phnAIa gene from Sphingomonas CHY-1 to generate hybrid genes, which were expressed in Escherichia. coli as chimerical enzyme complexes. Some of the RHD chimeras were found to be competent in the oxidation of two- and three-ring PAHs, but other appeared unstable. Our data are interpreted in structural terms based on 3D modeling of the catalytic subunit of hybrid RHDs. The strategy described herein might be useful for exploring the catalytic potential of the soil metagenome and recruit RHDs with new activities from uncultured soil bacteria.  相似文献   

8.
The genes of two ring-hydroxylating dioxygenases (RHDs) of Sphingomonas sp. VKM B-2434 were cloned and expressed in Escherichia coli. The relative values of the RHD specificity constants were estimated for six polycyclic aromatic hydrocarbons (PAHs) based on the kinetics of PAH mixture conversion by the recombinant strains. The substrate specificity profiles of the enzymes were found to be very different. Dioxygenase ArhA was the most specific to acenaphthylene and showed a low specificity to fluoranthene. Dioxygenase PhnA was the most specific to anthracene and phenanthrene and showed a considerable specificity to fluoranthene. Knockout derivatives of Sphingomonas sp. VKM B-2434 lacking ArhA, PhnA, and both dioxygenases were constructed. PAH degradation by the single-knockout mutants was in agreement with the substrate specificity of the RHD remaining intact. Double-knockout mutant lacking both enzymes was unable to oxidize PAHs. A mutant form of dioxygenase ArhA with altered substrate specificity was described.  相似文献   

9.
Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the ΔbphAa and etbAa1::cmrA etbAa2::aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the β-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta- and ortho-cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling.  相似文献   

10.
11.
The abundance of genes encoding aromatic ring-hydroxylating dioxygenases (RHDs) in the groundwater at an aromatic hydrocarbon-contaminated landfill near Sydney, Australia, was determined by quantitative DNA-DNA hybridization using class II RHD genes as probes. There were marked differences in hybridization signal intensity against DNA extracted from the groundwater at seven different locations across this heterogeneous site. This was interpreted as indicating variation in RHD gene abundance. Clone libraries of polymerase chain reaction (PCR)-amplified RHD gene fragments were constructed from DNA from each of the groundwater samples. The libraries from the samples with greater RHD gene abundance were dominated by a group of bacterial class II RHD genes, designated the S-cluster, that has yet to be found in cultured isolates. These groundwater samples contained no detectable petroleum hydrocarbons. A second group of class II RHD gene sequences, designated the T-cluster, dominated RHD gene clone libraries prepared from groundwater samples that contained detectable levels of total petroleum and aromatic hydrocarbons but lower RHD gene abundance. The hosts and in situ expression of these novel genes, and the substrates of the enzymes they encode, remain unknown. The scarcity of genes from known aromatic hydrocarbon-degrading bacteria and the numerical dominance of the novel genes suggest that the hosts of these novel genes may play an important role in aromatic hydrocarbon degradation at this site.  相似文献   

12.
A betaproteobacterium within the family Rhodocyclaceae previously identified as a pyrene degrader via stable-isotope probing (SIP) of contaminated soil (designated pyrene group 1 or PG1) was cultivated as the dominant member of a mixed bacterial culture. A metagenomic library was constructed, and the largest contigs were analyzed for genes associated with polycyclic aromatic hydrocarbon (PAH) metabolism. Eight pairs of genes with similarity to the α- and β-subunits of ring-hydroxylating dioxygenases (RHDs) associated with aerobic bacterial PAH degradation were identified and linked to PG1 through PCR analyses of a simplified enrichment culture. In tandem with a ferredoxin and reductase found in close proximity to one pair of RHD genes, six of the RHDs were cloned and expressed in Escherichia coli. Each cloned RHD was tested for activity against nine PAHs ranging in size from two to five rings. Despite differences in their predicted protein sequences, each of the six RHDs was capable of transforming phenanthrene and pyrene. Three RHDs could additionally transform naphthalene and fluorene, and these genotypes were also associated with the ability of the E. coli constructs to convert indole to indigo. Only one of the six cloned RHDs was capable of transforming anthracene and benz[a]anthracene. None of the tested RHDs were capable of significantly transforming fluoranthene, chrysene, or benzo[a]pyrene.  相似文献   

13.
14.
The model eukaryote Saccharomyces cerevisiae has two distinct peptide transport mechanisms, one for di-/tripeptides (the PTR system) and another for tetra-/pentapeptides (the OPT system). The PTR system consists of three genes, PTR1, PTR2 and PTR3. The transporter (Ptr2p), encoded by the gene PTR2, is a 12 transmembrane domain (TMD) integral membrane protein that translocates di-/tripeptides. Homologues to Ptr2p have been identified in virtually all organisms examined to date and comprise the PTR family of transport proteins. In S. cerevisiae, the expression of PTR2 is highly regulated at the cellular level by complex interactions of many genes, including PTR1, PTR3, CUP9 and SSY1. Oligopeptides, consisting of four to five amino acids, are transported by the 12 - 14 TMD integral membrane protein Opt1p. Unlike Ptr2p, distribution of this protein appears limited to fungi and plants, and there appears to be three paralogues in S. cerevisiae. This transporter has an affinity for enkephalin, an endogenous mammalian pentapeptide, as well as for glutathione. Although it is known that OPT1 is normally expressed only during sporulation, to date little is known about the genes and proteins involved in the regulation of OPT1 expression.  相似文献   

15.
In this study, we obtained over 4,000 transposon mutants of Mycobacterium vanbaalenii PYR-1 and analyzed one of the mutants, 8F7, which appeared to lose its ability to degrade pyrene while still being able to degrade fluoranthene. This mutant was identified to be defective in nidA, encoding an aromatic ring-hydroxylating oxygenase (RHO), known to be involved in the initial oxidation step of pyrene degradation. When cultured with pyrene as a sole source of polycyclic aromatic hydrocarbon (PAH), high-pressure liquid chromatography analysis revealed that the nidA mutant showed a significant decrease in the rate of pyrene degradation compared to the wild-type PYR-1, although pyrene was still being degraded. However, when incubated with PAH mixtures including pyrene, phenanthrene, and fluoranthene, the pyrene degradation rate of the mutant was higher than that of the mutant previously incubated with pyrene as a sole source of PAH. There was no significant difference between wild-type PYR-1 and the mutant in the rates of phenanthrene and fluoranthene degradation. From the whole-cell proteome analysis of mutant 8F7 induced by pyrene, we identified expression of a number of RHO enzymes which are suspected to be responsible for pyrene degradation in the nidA mutant, which had no expression of NidA. Taken together, results in this study provide direct evidence for the in vivo functional role of nidA in pyrene degradation at the level of the ring-cleavage-process (RCP) functional module but also for the robustness of the PAH metabolic network (MN) to such a genetic perturbation.  相似文献   

16.
The model eukaryote Saccharomyces cerevisiae has two distinct peptide transport mechanisms, one for di-/tripeptides (the PTR system) and another for tetra-/pentapeptides (the OPT system). The PTR system consists of three genes, PTR1, PTR2 and PTR3. The transporter (Ptr2p), encoded by the gene PTR2, is a 12 transmembrane domain (TMD) integral membrane protein that translocates di-/tripeptides. Homologues to Ptr2p have been identified in virtually all organisms examined to date and comprise the PTR family of transport proteins. In S. cerevisiae, the expression of PTR2 is highly regulated at the cellular level by complex interactions of many genes, including PTR1, PTR3, CUP9 and SSY1. Oligopeptides, consisting of four to five amino acids, are transported by the 12-14 TMD integral membrane protein Opt1p. Unlike Ptr2p, distribution of this protein appears limited to fungi and plants, and there appears to be three paralogues in S. cerevisiae. This transporter has an affinity for enkephalin, an endogenous mammalian pentapeptide, as well as for glutathione. Although it is known that OPT1 is normally expressed only during sporulation, to date little is known about the genes and proteins involved in the regulation of OPT1 expression.  相似文献   

17.
Bacterial aromatic ring-hydroxylating oxygenases (RHOs) are multicomponent enzyme systems which have potential utility in bioremediation of aromatic compounds in the environment. To cope with the enormous diversity of aromatic compounds in the environment, this enzyme family has evolved remarkably exhibiting broad substrate specificity. RHOs are multicomponent enzymes comprising of a homo- or hetero-multimeric terminal oxygenase and one or more electron transport (ET) protein(s). The present study attempts in depicting the evolutionary scenarios that might have occurred during the evolution of RHOs, by analyzing a set of available sequences including those obtained from complete genomes. A modified classification scheme identifying four new RHO types has been suggested on the basis of their evolutionary and functional behaviours, in relation to structural configuration of substrates and preferred oxygenation site(s). The present scheme emphasizes on the fact that the phylogenetic affiliation of RHOs is distributed among four distinct 'Similarity classes', independent of the constituent ET components. Similar combination of RHO components that was previously considered to be equivalent and classified together [Kweon et al., BMC Biochemistry 9, 11 (2008)] were found here in distinct similarity classes indicating the role of substrate-binding terminal oxygenase in guiding the evolution of RHOs irrespective of the nature of constituent ET components. Finally, a model for evolution of the multicomponent RHO enzyme system has been proposed, beginning from genesis of the terminal oxygenase components followed by recruitment of constituent ET components, finally evolving into various 'extant' RHO types.  相似文献   

18.
The p-cumate-degrading strain Pseudomonas putida F1 and the m- and p-toluate-degrading strain P. putida mt-2 transform indole-2-carboxylate and indole-3-carboxylate to colored products identified here as indigo, indirubin, and isatin. A mechanism by which these products could be formed spontaneously following dioxygenase-catalyzed dihydroxylation of the indolecarboxylates is proposed. Indolecarboxylates were employed as chromogenic substrates for identifying recombinant bacteria carrying genes encoding p-cumate dioxygenase and toluate dioxygenase. Dioxygenase gene-carrying bacteria could be readily distinguished as dark green-blue colonies among other colorless recombinant Escherichia coli colonies on selective agar plates containing either indole-2-carboxylate or indole-3-carboxylate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号