首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Creatine kinase (CK) is a member of a group of phosphoryl transfer enzymes called phosphagen kinases that play a key role in cellular energy transactions in animals. Three CK isoform gene families are known—cytoplasmic CK (CK), flagellar CK (fCK), and mitochondrial CK (MiCK). Each of the isoforms has a unique gene structure (intron/exon organization). A broad array of other phosphagen kinases is present in animals. Some of these enzymes are found only in annelids and closely related groups including glyocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK), and a unique arginine kinase (AK) restricted to annelids. Phylogenetic analyses of these annelid phosphagen kinases indicate that they appear to have evolved from a CK-like ancestor. To gain a greater understanding of the relationship of the CK isoforms to the annelid enzymes, we have determined the intron/exon organization of the genes for the following phosphagen kinases: Eisenia LK, Sabellastarte AK, and Arenicola mitochondrial TK (MiTK). Analysis of genomic database for the polychaete Capitella sp. yielded two putative LK genes [cytoplasmic LK and mitochondrial LK (MiLK)]. The intron/exon organization of these genes was compared with available data for cytoplasmic and mitochondrial CKs, and an annelid GK. Surprisingly, these annelid genes, irrespective of whether they are cytoplasmic (LK, AK, and GK) or mitochondrial (MiTK and MiLK), had the same 8-intron/9-exon organization and were strikingly similar to MiCK genes sharing seven of eight splice junctions. These results support the view that the MiCK gene is basal and ancestral to the phosphagen kinases unique to annelids.  相似文献   

2.
Uda K  Iwai A  Suzuki T 《FEBS letters》2005,579(30):6756-6762
Hypotaurocyamine kinase (HTK) is a member of the highly conserved family of phosphagen kinases that includes creatine kinase (CK) and arginine kinase (AK). HTK is found only in sipunculid worms, and it shows activities for both the substrates hypotaurocyamine and taurocyamine. Determining how HTK evolved in sipunculids is particularly insightful because all sipunculid-allied animals have AK and only some sipunculids have HTK. We determined the cDNA sequence of HTK from the sipunculid worm Siphonosoma cumanense for the first time, cloned it in pMAL plasmid and expressed it in E. coli as a fusion protein with maltose-binding protein. The cDNAderived amino acid sequence of Siphonosoma HTK showed high amino acid identity with molluscan AKs. Nevertheless, the recombinant enzyme of Siphonosoma HTK showed no activity for the substrate arginine, but showed activity for taurocyamine. Comparison of the amino acid sequences of HTK and AK indicated that the amino acid residues necessary for the binding of the substrate arginine in AK have been completely lost in Siphonosoma HTK sequence. The phylogenetic analysis indicated that the HTK amino acid sequence was placed just outside the molluscan AK cluster, which formed a sister group with the arthropod and nematode AKs. These results suggest that Siphonosoma HTK evolved from a gene for molluscan AK. Moreover, to confirm this assertion, we determined by PCR that the gene for Siphonosoma HTK has a 5-exon/4-intron structure, which is homologous with that of the molluscan AK genes. Further, the positions of splice junctions were conserved exactly between the two genes. Thus, we conclude that Siphonosoma HTK has evolved from a primordial gene for molluscan AK.  相似文献   

3.
Annelids as a group express a variety of phosphagen kinases including creatine kinase (CK), glyocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and a unique arginine kinase (AK) restricted to annelids. In prior work, we have determined and compared the intron/exon organization of the annelid genes for cytoplasmic GK, LK, AK, and mitochondrial TK and LK (MiTK and MiLK, respectively), and found that these annelid genes, irrespective of cytoplasmic or mitochondrial, have the same 8-intron/9-exon organization strikingly similar to mitochondrial CK (MiCK) genes. These results support the view that the MiCK gene is basal and ancestral to the phosphagen kinases unique to annelids. To gain a greater understanding of the evolutionary processes leading to the diversity of annelid phosphagen kinases, we determined for the first time the intron/exon organization of a cytoplasmic CK gene from a polychaete as well as that of another polychaete MiCK gene. These gene structures, coupled with a phylogenetic analyses of annelid enzymes and assessment of the fidelity of substrate specificity of some these phosphagen kinases, provide insight into the pattern of radiation of the annelid enzymes. Annelid phosphagen kinases appeared to have diverged in the following order (earliest first): (1) cytoplasmic AK, LK and TK, (2) GK, and (3) mitochondrial MiLK and MiTK. Interestingly, phylogenetic analyses showed that the above phosphagen kinases appear to be basal to all CK isoforms (mitochondrial, cytoplasmic and flagellar CKs). This somewhat paradoxical placement of CKs most likely reflects a higher rate of evolution and radiation of the annelid-specific LK, TK and GK genes than the CK isoform genes.  相似文献   

4.
Two fused proteins of dimeric arginine kinase (AK) from sea cucumber and dimeric creatine kinase (CK) from rabbit muscle, named AK-CK and CK-AK, were obtained through the expression of fused AK and CK genes. Both AK-CK and CK-AK had about 50% AK activity and about 2-fold K m values for arginine of native AK, as well as about 50% CK activity and about 2-fold K m values for creatine of native CK. This indicated that both AK and CK moieties are fully active in the two fused proteins. The structures of AK, CK, AK-CK, and CK-AK were compared by collecting data of far-UV circular dichroism, intrinsic fluorescence, 1-anilinonaphthalene-8-sulfonate binding fluorescence, and size-exclusion chromatography. The results indicated that dimeric AK and CK differed in the maximum emission wavelength, the exposure extent of hydrophobic surfaces, and molecular size, though they have a close evolutionary relationship. The structure and thermodynamic stability of AK, CK, AK-CK, and CK-AK were compared by guanidine hydrochloride (GdnHCl) titration. Dimeric AK was more dependent on the cooperation of two subunits than CK according to the analysis of residual AK or CK activity with GdnHCl concentration increase. Additionally, AK and CK had different denaturation curves induced by GdnHCl, but almost the same thermodynamic stability. The two fused proteins, AK-CK and CK-AK, had similar secondary structure, tertiary structure, molecular size, structure, and thermodynamic stability, which indicated that the expression order of AK and CK genes might have little effect on the characteristics of the fused proteins and might further verify the close relationship of dimeric AK and CK. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1208–1214.  相似文献   

5.
22 novel members of the Arabidopsis thaliana protein kinase family (AKs) were identified by using degenerate oligonucleotide primers directed to highly conserved amino acid sequences of the protein kinase (PK) catalytic domain. Of these 22 genes, 16 turned out to carry intron sequences. Homologies of AK sequences were detected to S-locus receptor protein kinases (SRKs) from Brassica spp., to SRK-like PKs from maize and A. thaliana and to several other receptor PKs from A. thaliana. Sequence similarity was also detected to Ca2+-dependent PKs (CDPKs) from rape and soybean, to SNF1 and to CDC2 homologues. The genomic organization and the accumulation of the mRNAs from these 22 AK genes were investigated.  相似文献   

6.
Taurocyamine kinase (TK) was previously reported to be restricted to certain marine annelids; however, the present study has proven otherwise. The lung fluke Paragonimuswestermani has a contiguous two-domain TK with a mass of 80 216 Da consisting of 713 amino acid residues sharing higher sequence identity with molluscan arginine kinase (AK). Both domains of P. westermani TK have significant activity for the substrate taurocyamine and exhibited synergism during substrate binding. Since TK plays a key role in energy metabolism and is not present in mammals, inhibitors against P. westermani TK could be effective novel chemotherapeutic agents and could be utilized for the development of specific diagnostic tools for the detection of paragonimiasis.  相似文献   

7.
Pineda AO  Ellington WR 《Gene》2001,265(1-2):115-121
Two major gene duplication events are thought to have taken place in the evolution of creatine kinases (CK) in the vertebrates - (1) the formation of distinct mitochondrial (MiCK) and cytoplasmic forms from the primordial gene and (2) subsequent formation of the sarcomeric (sar-) and ubiquitous (ubi-) isoforms of octameric MiCK and muscle (M) and brain (B) isoforms of dimeric, cytoplasmic CK. The genes of these two CK clades reflect a distant divergence as sar- and ubiMiCK genes consistently have nine protein-coding exons while M- and B-CK genes have seven protein-coding exons; these genes share only one common exon. CKs are also widely distributed in the invertebrates and it has recently been shown that MiCKs evolved well before the divergence of the major metazoan groups. In the present communication, we report the structure and topology of the gene for MiCK from the protostome marine worm Chaetopterus variopedatus. The protein-coding region of the gene for this primitive MiCK spans over 10 kb and consists of eight exons, the last five (E4-E8) have identical boundaries to the corresponding exons of sar- and ubiMiCK genes. Exon-3 of the C. variopedatus MiCK gene consists of the corresponding E3 and E4 of the vertebrate MiCKs with no intervening intron. E1 is longer and E2 is shorter in the polychaete MiCK gene than the counterpart sarcomeric and ubiquitous genes. The insertion of the intron in C. variopedatus E3 creating the two exons as well as the rearrangement of the intron between E1 and E2 must have occurred prior to or coincident with the duplication event creating the two vertebrate mitochondrial isoforms. Sarcomeric and ubiMiCKs display substantial differences from their invertebrate MiCK counterparts in properties relating to octamer stability and membrane binding. The evolutionary changes in gene topology may be a component of this functional progression.  相似文献   

8.
9.
Although having highly similar primary to tertiary structures, the different guanidino kinases exhibit distinct quaternary structures: monomer, dimer or octamer. However, no evidence for communication between subunits has yet been provided, and reasons for these different levels of quaternary complexity that can be observed from invertebrate to mammalian guanidino kinases remain elusive. Muscle creatine kinase is a dimer and disruption of the interface between subunits has been shown to give rise to destabilized monomers with slight residual activity; this low activity could, however, be due to a fraction of protein molecules present as dimer. CK monomer/monomer interface involves electrostatic interactions and increasing salt concentrations unfold and inactivate this enzyme. NaCl and guanidine hydrochloride show a synergistic unfolding effect and, whatever the respective concentrations of these compounds, inactivation is associated with a dissociation of the dimer. Using an interface mutant (W210Y), protein concentration dependence of the NaCl-induced unfolding profile indicates that the active dimer is in equilibrium with an inactive monomeric state. Although highly similar to muscle CK, horse shoe crab (Limulus polyphemus) arginine kinase (AK) is enzymatically active as a monomer. Indeed, high ionic strengths that can monomerize and inactivate CK, have no effect on AK enzymatic activity or on its structure as judged from intrinsic fluorescence data. Our results indicate that expression of muscle creatine kinase catalytic activity is dependent on its dimeric state which is required for a proper stabilization of the monomers.  相似文献   

10.
Arginine kinase (AK) catalyzes the reversible phosphorylation of arginine by MgATP to form a high-energy compound phosphoarginine (Parg) and MgADP in forward reaction in invertebrates. To detect the different catalytical mechanisms among Stichopus-AK (dimer) and Limulus-AK (monomer) and Torpedo creatine kinase (dimeric CK) and to reveal the structural role of the C-terminal domain loop (C-loop) of dimeric AK, six single-site mutants, E314D, E314Q, E314V, F315A, F315H and F315Y were constructed as well as two multi-site variants, S312R/F315H/V319E (formed by substituting the C-loop of monomeric AK for that of dimeric AK, termed the AAloop) and S312G/E314V/F315D/E317A/S318A/G321S (formed by substituting the C-loop of dimeric CK for that of dimeric AK, termed the ACloop). The AK activity of the three mutants at Glu314 decreased significantly, from 60- to 500-fold. The ACloop showed only slight AK activity, unlike the same construction in Limulus-AK. In addition, all Phe315 mutants including the AAloop which retained Glu314 had modest AK activity (5–84% of the wild type). All the results above suggested that Glu314 played a more significant role in catalysis in dimeric AK than in the monomer. In addition, ANS profiles indicated that the tolerance of the three Glu314 mutants to denaturant decreased slightly compared with wild type AK. Though monomeric AK has a His residue at site 315, mutants F315H and the AAloop could not resist any perturbation of denaturant, and the mutants showed a Gibbs free energy of about 2.7 kJ/mol lower than wild type AK. Therefore Phe315 in dimeric AK has a different role from His315 in monomeric AK. This might contribute to the stabilization of the native conformation, while His315 in Limulus AK directly binded to the carboxylate of arginine. Taking all the results above together, we suggested a unique mechanism in dimeric AK, different from both monomeric AK and dimeric CK.  相似文献   

11.
Suzuki T  Tomoyuki T  Uda K 《FEBS letters》2003,533(1-3):95-98
Arginine kinase (AK) from the clam Corbicula japonica is a unique enzyme in that it has an unusual two-domain structure with molecular mass of 80 kDa. It lacks two functionally important amino acid residues, Asp-62 and Arg-193, which are conserved in other 40 kDa AKs and are assumed to be key residues for stabilizing the substrate-bound structure. K m arg and Vmax values for the recombinant two-domain AK were determined. These values were close to those of usual 40 kDa AKs, although Corbicula AK lacks the functionally important Asp-62 and Arg-193. Domain 2 of Corbicula AK was separated from the two-domain enzyme and was expressed in Escherichia coli. Domain 2 still exhibited activity. However, kinetic parameters for domain 2 appeared to be slightly, but significantly, different from those of two-domain AK. Thus, it is likely that the formation of the contiguous dimer alters the kinetic properties of its constituent domains significantly. Comparison of K d arg and K m arg for two-domain AK and its domain 2 showed that the affinity of the enzyme for arginine is greater in the presence of substrate ATP than in its absence. Presumably this difference is correlated with the large structural differences in the enzyme in the presence or absence of substrate, namely open and closed structures. We expressed three mutants of Corbicula AK domain 2 (His-60 to Gly or Arg, Asp-197 to Gly), and determined their K m arg and Vmax values. The affinity for the substrate arginine in mutant enzymes was reduced considerably, accompanied by a decrease in Vmax. These results suggest that His-60 and Asp-197 affect the substrate binding system, and are consistent with the hypothesis that a hydrogen bond is formed between His-60 and Asp-197 in Corbicula AK as a substitute for the Asp-62 and Arg-193 bond in normal AKs.  相似文献   

12.
The purpose of this study was to elucidate the functional differences between the CK isoforms by cloning the cDNAs of 12 CK isoforms: the M and B cytoplasmic forms and uMiCK from mouse, the M1, M2 and B cytoplasmic forms from Danio rerio, M1 and M2 cytoplasmic forms from the lower vertebrate Lampetra japonica, a cytoplasmic CK and a MiCK from the marine worm Neanthes diversicolor, and a cytoplasmic CK and a MiCK from the soft coral Dendronephthya gigantea. These were expressed in Escherichia coli as a fusion protein with maltose-binding protein, and kinetic constants (K(m), K(d) and k(cat)) of all the recombinant enzymes, except for the unstable Dendronephthya cytoplasmic CK, were determined for the forward reaction. The kinetic constants of the M- and B-forms of the mouse and Danio cytoplasmic CKs differed significantly, with the K(m) for creatine (K(m)Cr) of M-CK being three- to nine-fold higher than that of B-CK, possibly reflecting differences in the concentration of creatine in muscle and brain cells. The mouse uMiCK had the lowest K(m)Cr value among the CK isoforms. In addition, it also exhibited a strong synergism for substrate binding (K(d)/K(m)=11.8). These results indicate that uMiCK has unique characteristics compared with other CK isoforms. Two subisoforms of M-CK were found in the lower vertebrate L. japonica, and the kinetic constants of recombinant M1- and M2-CKs differed significantly. The M1- and M2-CKs were expressed in skeletal muscle with a ratio of 7:3, while M1-CK was the predominant subisoform in the testis. The kinetic constants of cytoplasmic CK from the marine worm Neanthes were significantly different from those of Neanthes MiCK, possibly indicating that functional differences among CK isoforms occurred at least before the divergence of annelids from other protostome invertebrates.  相似文献   

13.
Unusual two-domain arginine kinases (AKs) arose independently at least two times during molecular evolution of phosphagen kinases: AKs from the primitive sea anemone Anthopleura japonicus and from the clam Pseudocardium sachalinensis. To elucidate its unusual evolution, the structures of Anthopleura and Pseudocardium AK genes have been determined. The Anthopleura gene consisted of 4 exons and 3 introns: two domains are linked by a bridge intron, and each domain contains one intron in different positions. On the other hand, the Pseudocardium gene consisted of 10 exons and 9 introns: two domains are also linked by a bridge intron, and domains 1 and 2 contains 3 and 5 introns, respectively, of which 3 introns are located in exactly same positions. Since the two domains of Pseudocardium AK are estimated to have diverged about 290 million years ago, the 3 introns have been conserved at least for this long. Comparison of intron positions in Anthopleura, Pseudocardium and C. elegans AK genes indicates that there is no intron conserved through the three AK lineages, in sharp contrast to relatively conservative intron positions in creatine kinase (CK) gene family.  相似文献   

14.
Arginine kinase (AK) is a member of a large family of phosphoryl transfer enzymes called phosphagen (guanidino) kinases. AKs are present in certain protozoans, sponges, cnidarians, and both lophotrochozoan and ecdysozoan protostomes. Another phosphagen kinase, creatine kinase (CK), is found in sponges, cnidarians, and both deuterostome and protostome groups but does not appear to be present in protozoans. To probe the early evolution of phosphagen kinases, we have amplified the cDNAs for AKs from three choanoflagellates and from the hexactinellid sponge Aphrocallistes beatrix and the demosponges Suberites fuscus and Microciona prolifera. Phylogenetic analysis using maximum likelihood of these choanoflagellate and sponge AKs with other AK sequences revealed that the AK from the choanoflagellate Monosiga brevicollis clusters with the AK from the glass sponge Aphrocallistes and is part of a larger cluster containing AKs from the demosponges Suberites and Microciona as well as basal and protostome invertebrates. In contrast, AKs from Codonosiga gracilis and Monosiga ovata form a distinct cluster apart from all other AK sequences. tBLASTn searches of the recently released M. brevicollis genome database showed that this species has three unique AK genes—one virtually identical to the M. brevicollis cDNA and the other two showing great similarity to C. gracilis and M. ovata AKs. Three distinct AK genes are likely present in choanoflagellates. Two of these AKs display extensive similarity to both CKs and an AK from sponges. Previous work has shown CK evolved from an AK-like ancestor prior to the divergence of sponges. The present results provide evidence suggesting that the initial gene duplication event(s) leading to the CK lineage may have occurred before the divergence of the choanoflagellate and animal lineages.  相似文献   

15.
Origin of the genes for the isoforms of creatine kinase   总被引:3,自引:0,他引:3  
Creatine kinase (CK) is a member of a family of phosphoryl transfer enzymes called phosphagen (guanidino) kinases which play a central role in cellular energy homeostasis. There are three CK isoform gene groups, each coding for proteins targeted to different intracellular compartments--cytoplasmic (CytCK), mitochondrial (MtCK) and flagellar (FlgCK). The former two CKs are either dimeric or octameric while FlgCKs are contiguous trimers consisting of three fused, complete CK domains. Conventional wisdom supports the view that CKs evolved from a cytoplasmic, monomeric ancestral protein closely related to a phosphagen kinase homologue, arginine kinase (AK). Recently, it has been shown that a demosponge (Phylum Porifera) expresses a true MtCK and two dimeric, protoflagellar CKs (protoflgCK) with great similarity to FlgCKs. To further probe the early evolution of CK, we have obtained additional sequences for Mt- and protoflgCKs from two more demosponges and from three hexactinellid (glass) sponges as well as an MtCK sequence from a basal metazoan cnidarian. Phylogenetic analyses using Maximum Likelihood (ML) of these new CK sequences with other CKs and phosphagen kinases yielded a consensus tree containing an assemblage of MtCKs and a supercluster consisting of protoflg-, Flg- and CytCKs. The MtCKs appear basal in the tree topology consistent with prior results. Within the protoflg-, Flg- and CytCK supercluster, the protoflgCKs appear to be allied to the domains of the FlgCKs, although the support is not robust. PCR amplification of genomic DNA and sequencing of the genes for Mt- and protoflgCK from the demosponge Suberites fuscus showed that the sponge MtCK shares four-five common intron:exon boundaries with invertebrate, protochordate and vertebrate MtCKs supporting a common ancestry and the extreme conservation of intron:exon organization in MtCK genes. The protoflgCK gene organization was highly divergent in relation to other CK genes but shares a common intron:exon boundary with domain 2 of the gene for the FlgCK from the tunicate Ciona intestinalis, providing support for the linkage of the protoflgCKs with the FlgCKs. Our results show that the two, major CK gene lineages are present in arguably the oldest, extant metazoan group, the hexactinellid sponges, indicating that these two genes are ancient and confirming prior work that the MtCK gene is likely basal and ancestral.  相似文献   

16.
The serine/arginine subfamily of protein kinases has been conserved throughout evolution and its members are thought to play important roles in the regulation of multiple cellular processes. Mammalian SRPK1 has been considered as a constitutively active kinase that is predominantly expressed in testis. In the present study, recombinant GST-SRPK1 was used as substrate to identify potential protein kinase(s) in testis extracts, involved in phosphorylating and thereby regulating the activity of this enzyme. Using a panel of chromatography media, inhibition by heparin, immunoblot analysis, and phosphopeptide mapping, CK2 was determined to be the major kinase that phosphorylates SRPK1. Phosphorylation of SRPK1 by CK2 occurred mainly at Ser(51) and Ser(555) in vitro, and resulted in approximately 6-fold activation of the enzyme. These findings suggest that SRPK1 may be an important cellular target for CK2 action.  相似文献   

17.
Taurocyamine kinase (TK) is a member of the highly conserved family of phosphagen kinases that includes creatine kinase (CK) and arginine kinase. TK is found only in certain marine annelids. In this study we used PCR to amplify two cDNAs coding for TKs from the polychaete Arenicola brasiliensis, cloned these cDNAs into the pMAL plasmid and expressed the TKs as fusion proteins with the maltose-binding protein. These are the first TK cDNA and deduced amino acid sequences to be reported. One of the two cDNA-derived amino acid sequences of TKs shows a high amino acid identity to lombricine kinase, another phosphagen kinase unique to annelids, and appears to be a cytoplasmic isoform. The other sequence appears to be a mitochondrial isoform; it has a long N-terminal extension that was judged to be a mitochondrial targeting peptide by several on-line programs and shows a higher similarity in amino acid sequence to mitochondrial creatine kinases from both vertebrates and invertebrates. The recombinant cytoplasmic TK showed activity for the substrates taurocyamine and lombricine (9% of that of taurocyamine). However, the mitochondrial TK showed activity for taurocyamine, lombricine (30% of that of taurocyamine) and glycocyamine (7% of that of taurocyamine). Neither TK catalyzed the phosphorylation of creatine. Comparison of the deduced amino acid sequences of mitochondrial CK and TK indicated that several key residues required for CK activity are lacking in the mitochondrial TK sequence. Homology models for both cytoplasmic and mitochondrial TK, constructed using CK templates, provided some insight into the structural correlation of differences in substrate specificity between the two TKs. A phylogenetic analysis using amino acid sequences from a broad spectrum of phosphagen kinases showed that annelid-specific phosphagen kinases (lombricine kinase, glycocyamine kinase and cytoplasmic and mitochondrial TKs) are grouped in one cluster, and form a sister-group with CK sequences from vertebrate and invertebrate groups. It appears that the annelid-specific phosphagen kinases, including cytoplasmic and mitochondrial TKs, evolved from a CK-like ancestor(s) early in the divergence of the protostome metazoans. Furthermore, our results suggest that the cytoplasmic and mitochondrial isoforms of TK evolved independently.  相似文献   

18.
19.
As a step to further understand the role of adenylate kinase (AK) in the energy metabolism network, we identified, purified, and characterized a previously undescribed adenylate kinase in Drosophila melanogaster. The cDNA encodes a 175-amino acid protein, which shows 47.85% identity in 163 amino acids to human AK6. The recombinant protein was successfully expressed in Escherichia coli BL21(DE3) strain. Characterization of this protein by enzyme activity assay showed adenylate kinase activity. AMP and CMP were the preferred substrates, and UMP can also be phosphorylated to some extent, with ATP as the best phosphate donor. Subcellular localization study showed a predominantly nuclear localization. Therefore, based on the substrate specificity, the specific nuclear localization in the cell, and the sequence similarity with human AK6, we named this novel adenylate kinase identified from the fly DAK6.  相似文献   

20.
Stichopus arginine kinase (AK) is a unique enzyme in that it evolved not from the AK gene but from the creatine kinase (CK) gene: the entire amino acid sequence is homologous with other CKs apart from the guanidine specificity region (GS region), which is identical in structure to that of AK. Ten independent mutations were introduced around the GS region in Stichopus AK. When an insertion or deletion was introduced near the GS region, the Vmax of the mutant enzyme was dramatically decreased to less than 0.1% of the wild type, suggesting that the length of the GS region is crucial for the recognition of the guanidine substrate. Replacement of Phe63 and Leu65 to Gly in the Stichopus enzyme caused a remarkable increase in the Kmarg. This indicates that Phe63 and Leu65 are associated with the arginine substrate-binding affinity. The hydrogen bond formed between the Asp62 and Arg193 residues is thought to play a key role in stabilizing the closed substrate-bound structure of AK. Mutants that eliminated this hydrogen bond had a considerably decreased Vmax, accompanied by a threefold increase in Kmarg. It is noted that the value of the Kmarg of the mutants became very close to the Kdarg value of the wild type. Six independent mutations were introduced in the GS region of Danio M-CK. Almost equivalent values of Kmcr and Kdcr in all of the mutants indicated that a typical synergism was completely lost. The results suggested that the Ile69 to Gly mutant, displaying a high Kmcr and a low Vmax, plays an important role in creatine-binding. This is consistent with the observation that in the structure of Torpedo CK, Ile69 provides a hydrophobic pocket to optimize creatine-binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号