首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Southeastern Europe and, particularly, the Balkan Peninsula are especially useful when studying the mechanisms responsible for generating the current distribution of Paleolithic and Neolithic genetic signals observed throughout Europe. In this study, 404 individuals from Montenegro and 179 individuals from Serbia were typed for 17 Y‐STR loci and compared across 9 Y‐STR loci to geographically targeted previously published collections to ascertain the phylogenetic relationships of populations within the Balkan Peninsula and beyond. We aim to provide information on whether groups in the region represent an amalgamation of Paleolithic and Neolithic genetic substrata, or whether acculturation has played a critical role in the spread of agriculture. We have found genetic markers of Middle Eastern, south Asian and European descent in the area, however, admixture analyses indicate that over 80% of the Balkan gene pool is of European descent. Altogether, our data support the view that the diffusion of agriculture into the Balkan region was mostly a cultural phenomenon although some genetic infiltration from Africa, the Levant, the Caucasus, and the Near East has occurred. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
One of the primary unanswered questions regarding the dispersal of Romani populations concerns the geographical region and/or the Indian caste/tribe that gave rise to the proto-Romani group. To shed light on this matter, 161 Y-chromosomes from Roma, residing in two different provinces of Serbia, were analyzed. Our results indicate that the paternal gene pool of both groups is shaped by several strata, the most prominent of which, H1-M52, comprises almost half of each collection's patrilineages. The high frequency of M52 chromosomes in the two Roma populations examined may suggest that they descend from a single founder that has its origins in the Indian subcontinent. Moreover, when the Y-STR profiles of haplogroup H derived individuals in our Roma populations were compared to those typed in the South Indian emigrants from Malaysia and groups from Madras, Karnataka (Lingayat and Vokkaliga castes) and tribal Soligas, sharing of the two most common haplotypes was observed. These similarities suggest that South India may have been one of the contributors to the proto-Romanis. European genetic signatures (i.e., haplogroups E1b1b1a1b-V13, G2a-P15, I-M258, J2-M172 and R1-M173), on the other hand, were also detected in both groups, but at varying frequencies. The divergent European genetic signals in each collection are likely the result of differential gene flow and/or admixture with the European host populations but may also be attributed to dissimilar endogamous practices following the initial founder effect. Our data also support the notion that a number of haplogroups including G2a-P15, J2a3b-M67(xM92), I-M258 and E1b1b1-M35 were incorporated into the proto-Romani paternal lineages as migrants moved from northern India through Southwestern Asia, the Middle East and/or Anatolia into the Balkans.  相似文献   

3.
The relative contributions to modern European populations of Paleolithic hunter-gatherers and Neolithic farmers from the Near East have been intensely debated. Haplogroup R1b1b2 (R-M269) is the commonest European Y-chromosomal lineage, increasing in frequency from east to west, and carried by 110 million European men. Previous studies suggested a Paleolithic origin, but here we show that the geographical distribution of its microsatellite diversity is best explained by spread from a single source in the Near East via Anatolia during the Neolithic. Taken with evidence on the origins of other haplogroups, this indicates that most European Y chromosomes originate in the Neolithic expansion. This reinterpretation makes Europe a prime example of how technological and cultural change is linked with the expansion of a Y-chromosomal lineage, and the contrast of this pattern with that shown by maternally inherited mitochondrial DNA suggests a unique role for males in the transition.  相似文献   

4.
The Qiangic languages in western Sichuan (WSC) are believed to be the oldest branch of the Sino-Tibetan linguistic family, and therefore, all Sino-Tibetan populations might have originated in WSC. However, very few genetic investigations have been done on Qiangic populations and no genetic evidences for the origin of Sino-Tibetan populations have been provided. By using the informative Y chromosome and mitochondrial DNA (mtDNA) markers, we analyzed the genetic structure of Qiangic populations. Our results revealed a predominantly Northern Asian-specific component in Qiangic populations, especially in maternal lineages. The Qiangic populations are an admixture of the northward migrations of East Asian initial settlers with Y chromosome haplogroup D (D1-M15 and the later originated D3a-P47) in the late Paleolithic age, and the southward Di-Qiang people with dominant haplogroup O3a2c1*-M134 and O3a2c1a-M117 in the Neolithic Age.  相似文献   

5.
Previous studies have shown that India's vast coastal rim played an important role in the dispersal of modern humans out of Africa but the Karnataka state, which is located on the southwest coast of India, remains poorly characterized genetically. In the present study, two Dravidian populations, namely Lingayat (N = 101) and Vokkaliga (N = 102), who represent the two major communities of the Karnataka state, were examined using high-resolution analyses of Y-chromosome single nucleotide polymorphisms (Y-SNPs) and seventeen short tandem repeat (Y-STR) loci. Our results revealed that the majority of the Lingayat and Vokkaliga paternal gene pools are composed of four Y-chromosomal haplogroups (H, L, F* and R2) that are frequent in the Indian subcontinent. The high level of L1-M76 chromosomes in the Vokkaligas suggests an agricultural expansion in the region, while the predominance of R1a1a1b2-Z93 and J2a-M410 lineages in the Lingayat indicates gene flow from neighboring south Indian populations and West Asia, respectively. Lingayat (0.9981) also exhibits a relatively high haplotype diversity compared to Vokkaliga (0.9901), supporting the historical record that the Lingayat originated from multiple source populations. In addition, we detected ancient lineages such as F*-M213, H*-M69 and C*-M216 that may be indicative of genetic signatures of the earliest settlers who reached India after their migration out of Africa.  相似文献   

6.
Recently, the debate on the origins of the major European Y chromosome haplogroup R1b1b2-M269 has reignited, and opinion has moved away from Palaeolithic origins to the notion of a younger Neolithic spread of these chromosomes from the Near East. Here, we address this debate by investigating frequency patterns and diversity in the largest collection of R1b1b2-M269 chromosomes yet assembled. Our analysis reveals no geographical trends in diversity, in contradiction to expectation under the Neolithic hypothesis, and suggests an alternative explanation for the apparent cline in diversity recently described. We further investigate the young, STR-based time to the most recent common ancestor estimates proposed so far for R-M269-related lineages and find evidence for an appreciable effect of microsatellite choice on age estimates. As a consequence, the existing data and tools are insufficient to make credible estimates for the age of this haplogroup, and conclusions about the timing of its origin and dispersal should be viewed with a large degree of caution.  相似文献   

7.
According to written sources, Roma (Romanies, Gypsies) arrived in the Balkans around 1,000 years ago from India and have subsequently spread through several parts of Europe. Genetic data, particularly from the Y chromosome, have supported this model, and can potentially refine it. We now provide an analysis of Y-chromosomal markers from five Roma and two non-Roma populations (N = 787) in order to investigate the genetic relatedness of the Roma population groups to one another, and to gain further understanding of their likely Indian origins, the genetic contribution of non-Roma males to the Roma populations, and the early history of their splits and migrations in Europe. The two main sources of the Roma paternal gene pool were identified as South Asian and European. The reduced diversity and expansion of H1a-M82 lineages in all Roma groups imply shared descent from a single paternal ancestor in the Indian subcontinent. The Roma paternal gene pool also contains a specific subset of E1b1b1a-M78 and J2a2-M67 lineages, implying admixture during early settlement in the Balkans and the subsequent influx into the Carpathian Basin. Additional admixture, evident in the low and moderate frequencies of typical European haplogroups I1-M253, I2a-P37.2, I2b-M223, R1b1-P25, and R1a1-M198, has occurred in a more population-specific manner.  相似文献   

8.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, and M56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno-Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

9.
Genetic diversity has been analyzed in 22 ethnic groups of the Caucasus on the basis of data on Y-chromosome and mitochondrial DNA (mtDNA) markers, as well as genome-wide data on autosomal single-nucleotide polymorphisms (SNPs). It has been found that the West Asian component is prevailing in all ethnic groups studied except for Nogays. This Near Eastern ancestral component has proved to be characteristic of Caucasian populations and almost entirely absent in their northern neighbors inhabiting the Eastern European Plain. Turkic-speaking populations, except Nogays, did not exhibit an increased proportion of Eastern Eurasian mtDNA or Y-chromosome haplogroups compared to some Abkhaz-Adyghe populations (Adygs and Kabardians). Genome-wide SNP analysis has also shown substantial differences of Nogays from all other Caucasian populations studied. However, the characteristic difference of Nogays from other populations of the Caucasus seems somewhat ambiguous in terms of the R1a1a-M17(M198) and R1b1b1-M73 haplogroups of the Y chromosome. The state of these haplogroups in Turkic-speaking populations of the Caucasus requires further study.  相似文献   

10.
The Egyptian Western Desert lies on an important geographic intersection between Africa and Asia. Genetic diversity of this region has been shaped, in part, by climatic changes in the Late Pleistocene and Holocene epochs marked by oscillating humid and arid periods. We present here a whole genome analysis of mitochondrial DNA (mtDNA) and high‐resolution molecular analysis of nonrecombining Y‐chromosomal (NRY) gene pools of a demographically small but autochthonous population from the Egyptian Western Desert oasis el‐Hayez. Notwithstanding signs of expected genetic drift, we still found clear genetic evidence of a strong Near Eastern input that can be dated into the Neolithic. This is revealed by high frequencies and high internal variability of several mtDNA lineages from haplogroup T. The whole genome sequencing strategy and molecular dating allowed us to detect the accumulation of local mtDNA diversity to 5,138 ± 3,633 YBP. Similarly, theY‐chromosome gene pool reveals high frequencies of the Near Eastern J1 and the North African E1b1b1b lineages, both generally known to have expanded within North Africa during the Neolithic. These results provide another piece of evidence of the relatively young population history of North Africa. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The transition from hunting and gathering to agriculture in Europe is associated with demographic changes that may have shifted the human gene pool of the region as a result of an influx of Neolithic farmers from the Near East. However, the genetic composition of populations after the earliest Neolithic, when a diverse mosaic of societies that had been fully engaged in agriculture for some time appeared in central Europe, is poorly known. At this period during the Late Neolithic (ca. 2,800-2,000 BC), regionally distinctive burial patterns associated with two different cultural groups emerge, Bell Beaker and Corded Ware, and may reflect differences in how these societies were organized. Ancient DNA analyses of human remains from the Late Neolithic Bell Beaker site of Kromsdorf, Germany showed distinct mitochondrial haplotypes for six individuals, which were classified under the haplogroups I1, K1, T1, U2, U5, and W5, and two males were identified as belonging to the Y haplogroup R1b. In contrast to other Late Neolithic societies in Europe emphasizing maintenance of biological relatedness in mortuary contexts, the diversity of maternal haplotypes evident at Kromsdorf suggests that burial practices of Bell Beaker communities operated outside of social norms based on shared maternal lineages. Furthermore, our data, along with those from previous studies, indicate that modern U5-lineages may have received little, if any, contribution from the Mesolithic or Neolithic mitochondrial gene pool.  相似文献   

12.
Polymorphisms in mitochondrial (mt) DNA and Y-chromosomes of seven socially and linguistically diverse castes and tribes of Eastern India were examined to determine their genetic relationships, their origin, and the influence of demographic factors on population structure. Samples from the Orissa Brahmin, Karan, Khandayat, Gope, Juang, Saora, and Paroja were analyzed for mtDNA hypervariable sequence (HVS) I and II, eight Y-chromosome short tandem repeats (Y-STRs), and lineage-defining mutations diagnostic for Indian- and Eurasian-specific haplogroups. Our results reveal that haplotype diversity and mean pairwise differences (MPD) was higher in caste groups of the region (>0.998, for both systems) compared to tribes (0.917-0.996 for Y-STRs, and 0.958-0.988 for mtDNA haplotypes). The majority of paternal lineages belong to the R1a1, O2a, and H haplogroups (62.7%), while 73.2% of maternal lineages comprise the Indian-specific M*, M5, M30, and R* mtDNA haplogroups, with a sporadic occurrence of West Eurasian lineages. Our study reveals that Orissa Brahmins (a higher caste population) have a genetic affinity with Indo-European speakers of Eastern Europe, although the Y-chromosome data show that the genetic distances of populations are not correlated to their position in the caste hierarchy. The high frequency of the O2a haplogroup and absence of East Asian-specific mtDNA lineages in the Juang and Saora suggest that a migration of Austro-Asiatic tribes to mainland India was exclusively male-mediated which occurred during the demographic expansion of Neolithic farmers in southern China. The phylogeographic analysis of mtDNA and Y-chromosomes revealed varied ancestral sources for the diverse genetic components of the populations of Eastern India.  相似文献   

13.
Sjödin P  François O 《PloS one》2011,6(6):e21592
Whether or not the spread of agriculture in Europe was accompanied by movements of people is a long-standing question in archeology and anthropology, which has been frequently addressed with the help of population genetic data. Estimates on dates of expansion and geographic origins obtained from genetic data are however sensitive to the calibration of mutation rates and to the mathematical models used to perform inference. For instance, recent data on the Y chromosome haplogroup R1b1b2 (M269) have either suggested a Neolithic origin for European paternal lineages or a more ancient Paleolithic origin depending on the calibration of Y-STR mutation rates. Here we examine the date of expansion and the geographic origin of hgR1b1b2 considering two current estimates of mutation rates in a total of fourteen realistic wave-of-advance models. We report that a range expansion dating to the Paleolithic is unlikely to explain the observed geographical distribution of microsatellite diversity, and that whether the data is informative with respect to the spread of agriculture in Europe depends on the mutation rate assumption in a critical way.  相似文献   

14.
Phylogenetic and diversity analysis of the mtDNA control region sequence variation of 821 individuals from Europe and the Middle East distinguishes five major lineage groups with different internal diversities and divergence times. Consideration of the diversities and geographic distribution of these groups within Europe and the Middle East leads to the conclusion that ancestors of the great majority of modern, extant lineages entered Europe during the Upper Paleolithic. A further set of lineages arrived from the Middle East much later, and their age and geographic distribution within Europe correlates well with archaeological evidence for two culturally and geographically distinct Neolithic colonization events that are associated with the spread of agriculture. It follows from this interpretation that the major extant lineages throughout Europe predate the Neolithic expansion and that the spread of agriculture was a substantially indigenous development accompanied by only a relatively minor component of contemporary Middle Eastern agriculturalists. There is no evidence of any surviving Neanderthal lineages among modern Europeans.  相似文献   

15.
Mitochondrial DNA analysis of Atlantic European samples has detected significant latitudinal clines for several clusters with Paleolithic (H) and Neolithic (J, U4, U5a1, and U5a1a) coalescence ages in Europe. These gradients may be explained as the result of Neolithic influence on a rather homogeneous Paleolithic background. There is also evidence that some Neolithic clusters reached this border by a continental route (J, J1, J1a, U5a1, and U5a1a), whereas others (J2) did so through the Mediterranean coast. An important gene flow from Africa was detected in the Atlantic Iberia. Specific sub-Saharan lineages appeared mainly restricted to southern Portugal, and could be attributed to historic Black slave trade in the area and to a probable Saharan Neolithic influence. In fact, U6 haplotypes of specific North African origin have only been detected in the Iberian peninsula northwards from central Portugal. Based on this peculiar distribution and the high diversity pi value (0.014 +/- 0.001) in this area compared to North Africa (0.006 +/- 0.001), we reject the proposal that only historic events such as the Moslem occupation are the main cause of this gene flow, and instead propose a pre-Neolithic origin for it.  相似文献   

16.
Increasing phylogenetic resolution of the Y chromosome haplogroup tree has led to finer temporal and spatial resolution for studies of human migration. Haplogroup T, initially known as K2 and defined by mutation M70, is found at variable frequencies across West Asia, Africa, and Europe. While several SNPs were recently discovered that extended the length of the branch leading to haplogroup T, only two SNPs are known to mark internal branches of haplogroup T. This low level of phylogenetic resolution has hindered studies of the origin and dispersal of this interesting haplogroup, which is found in Near Eastern non-Jewish populations, Jewish populations from several communities, and in the patrilineage of President Thomas Jefferson. Here we map 10 new SNPs that, together with the previously known SNPs, mark 11 lineages and two large subclades (T1a and T1b) of haplogroup T. We also report a new SNP that links haplogroups T and L within the major framework of Y chromosome evolution. Estimates of the timing of the branching events within haplogroup T, along with a comprehensive geographic survey of the major T subclades, suggest that this haplogroup began to diversify in the Near East -25 kya. Our survey also points to a complex history of dispersal of this rare and informative haplogroup within the Near East and from the Near East to Europe and sub-Saharan Africa. The presence of T1a2 chromosomes in Near Eastern Jewish and non-Jewish populations may reflect early exiles between the ancient lands of Israel and Babylon. The presence of different subclades of T chromosomes in Europe may be explained by both the spread of Neolithic farmers and the later dispersal of Jews from the Near East. Finally, the moderately high frequency (-18%) of T1b* chromosomes in the Lemba of southern Africa supports the hypothesis of a Near Eastern, but not necessarily a Jewish, origin for their paternal line.  相似文献   

17.
Excavating Y-chromosome haplotype strata in Anatolia   总被引:1,自引:0,他引:1  
Analysis of 89 biallelic polymorphisms in 523 Turkish Y chromosomes revealed 52 distinct haplotypes with considerable haplogroup substructure, as exemplified by their respective levels of accumulated diversity at ten short tandem repeat (STR) loci. The major components (haplogroups E3b, G, J, I, L, N, K2, and R1; 94.1%) are shared with European and neighboring Near Eastern populations and contrast with only a minor share of haplogroups related to Central Asian (C, Q and O; 3.4%), Indian (H, R2; 1.5%) and African (A, E3*, E3a; 1%) affinity. The expansion times for 20 haplogroup assemblages was estimated from associated STR diversity. This comprehensive characterization of Y-chromosome heritage addresses many multifaceted aspects of Anatolian prehistory, including: (1) the most frequent haplogroup, J, splits into two sub-clades, one of which (J2) shows decreasing variances with increasing latitude, compatible with a northward expansion; (2) haplogroups G1 and L show affinities with south Caucasus populations in their geographic distribution as well as STR motifs; (3) frequency of haplogroup I, which originated in Europe, declines with increasing longitude, indicating gene flow arriving from Europe; (4) conversely, haplogroup G2 radiates towards Europe; (5) haplogroup E3b3 displays a latitudinal correlation with decreasing frequency northward; (6) haplogroup R1b3 emanates from Turkey towards Southeast Europe and Caucasia and; (7) high resolution SNP analysis provides evidence of a detectable yet weak signal (<9%) of recent paternal gene flow from Central Asia. The variety of Turkish haplotypes is witness to Turkey being both an important source and recipient of gene flow.  相似文献   

18.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25,M89, andM56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno–Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

19.
The Bayash are a branch of Romanian speaking Roma living dispersedly in Central, Eastern, and Southeastern Europe. To better understand the molecular architecture and origin of the Croatian Bayash paternal gene pool, 151 Bayash Y chromosomes were analyzed for 16 SNPs and 17 STRs and compared with European Romani and non-Romani majority populations from Europe, Turkey, and South Asia. Two main layers of Bayash paternal gene pool were identified: ancestral (Indian) and recent (European). The reduced diversity and expansion signals of H1a patrilineages imply descent from closely related paternal ancestors who could have settled in the Indian subcontinent, possibly as early as between the eighth and tenth centuries AD. The recent layer of the Bayash paternal pool is dominated by a specific subset of E1b1b1a lineages that are not found in the Balkan majority populations. At least two private mutational events occurred in the Bayash during their migrations from the southern Balkans toward Romania. Additional admixture, evident in the low frequencies of typical European haplogroups, J2, R1a, I1, R1b1b2, G, and I2a, took place primarily during the early Bayash settlement in the Balkans and the Romani bondage in Romania. Our results indicate two phenomena in the Bayash and analyzed Roma: a significant preservation of ancestral H1a haplotypes as a result of considerable, but variable level of endogamy and isolation and differential distribution of less frequent, but typical European lineages due to different patterns of the early demographic history in Europe marked by differential admixture and genetic drift.  相似文献   

20.
North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号