共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2017,1861(8):2119-2131
Members of the monothiol glutaredoxin family and members of the BolA-like protein family have recently emerged as specific interacting partners involved in iron-sulfur protein maturation and redox regulation pathways. It is known that human mitochondrial BOLA1 and BOLA3 form [2Fe-2S] cluster-bridged dimeric heterocomplexes with the monothiol glutaredoxin GRX5. The structure and cluster coordination of the two [2Fe-2S] heterocomplexes as well as their molecular function are, however, not defined yet. Experimentally-driven structural models of the two [2Fe-2S] cluster-bridged dimeric heterocomplexes, the relative stability of the two complexes and the redox properties of the [2Fe-2S] cluster bound to these complexes are here presented on the basis of UV/vis, CD, EPR and NMR spectroscopies and computational protein-protein docking. While the BOLA1-GRX5 complex coordinates a reduced, Rieske-type [2Fe-2S]1+ cluster, an oxidized, ferredoxin-like [2Fe-2S]2+ cluster is present in the BOLA3-GRX5 complex. The [2Fe-2S] BOLA1-GRX5 complex is preferentially formed over the [2Fe-2S] BOLA3-GRX5 complex, as a result of a higher cluster binding affinity. All these observed differences provide the first indications discriminating the molecular function of the two [2Fe-2S] heterocomplexes. 相似文献
2.
Hazel M. Holden Bruce L. Jacobson John K. Hurley Gordon Tollin Byung-Ha Oh Lars Skjeldal Young Kee Chae Hong Cheng Bin Xia John L. Markley 《Journal of bioenergetics and biomembranes》1994,26(1):67-88
The ability to overexpress [2Fe-2S] ferredoxins inEscherichia coli has opened up exciting research opportunities. High-resolution x-ray structures have been determined for the wild-type ferredoxins produced by the vegetative and heterocyst forms ofAnabaena strain 7120 (in their oxidized states), and these have been compared to structural information derived from multidimensional, multinuclear NMR spectroscopy. The electron delocalization in these proteins in their oxidized and reduced states has been studied by1H,2H,13C, and15N NMR spectroscopy. Site-directed mutagenesis has been used to prepare variants of these ferredoxins. Mutants (over 50) of the vegetative ferredoxin have been designed to explore questions about cluster assembly and stabilization and to determine which residues are important for recognition and electron transfer to the redox partnerAnabaena ferredoxin reductase. The results have shown that serine can replace cysteine at each of the four cluster attachment sites and still support cluster assembly. Electron transfer has been demonstrated with three of the four mutants. Although these mutants are less stable than the wild-type ferredoxin, it has been possible to determine the x-ray structure of one (C49S) and to characterize all four by EPR and NMR. Mutagenesis has identified residues 65 and 94 of the vegetative ferredoxin as crucial to interaction with the reductase. Three-dimensional models have been obtained by x-ray diffraction analysis for several additional mutants: T48S, A50V, E94K (four orders of magnitude less active than wild type in functional assays), and A43S/A45S/T48S/A50N (quadruple mutant). 相似文献
3.
4.
The terminal enzyme of heme biosynthesis, ferrochelatase (EC 4.99.1.1), catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme. Prior to the present work, [2Fe-2S] clusters have been identified and characterized in animal ferrochelatases but not in plant or prokaryotic ferrochelatases. Herein we present evidence that ferrochelatases from the bacteria Caulobacter crescentus and Mycobacterium tuberculosis possess [2Fe-2S] clusters. The enzyme from C. crescentus is a homodimeric, membrane-associated protein while the enzyme from M. tuberculosis is monomeric and soluble. The clusters of the C. crescentus and M. tuberculosis ferrochelatases are ligated by four cysteines but possess ligand spacings that are unlike those of any previously characterized [2Fe-2S] cluster-containing protein, including the ferrochelatase of the yeast Schizosaccharomyces pombe. Thus, the microbial ferrochelatases represent a new group of [2Fe-2S] cluster-containing proteins. 相似文献
5.
Resonance Raman spectroscopy has been used to investigate the Fe-S stretching modes of the [4Fe-4S]2+ cluster in the oxidized iron protein of Clostridium pasteurianum nitrogenase. The results are consistent with a cubane [4Fe-4S] cluster having effective Td symmetry with cysteinyl coordination for each iron. In accord with previous optical and EPR studies [(1984) Biochemistry 23, 2118-2122], treatment with the iron chelator alpha, alpha'-dipyridyl in the presence of MgATP is shown to effect cluster conversion to a [2Fe-2S]2+ cluster. Resonance Raman data also indicate that partial conversion to a [2Fe-2S]2+ cluster is induced by thionine-oxidation in the presence of MgATP in the absence of an iron chelator. This result suggests new explanations for the dramatic change in the CD spectrum that accompanies MgATP-binding to the oxidized Fe protein and the anomalous resonance Raman spectra of thionine-oxidized Clostridium pasteurianum bidirectional hydrogenase. 相似文献
6.
The ferredoxin of the extreme haloarchaeon Halobacterium salinarum requires high (>2 M) concentration of salt for its stability. We have used a variety of spectroscopic probes for identifying the structural elements which necessitate the presence of high salt for its stability. Titration of either the fluorescence intensity of the tryptophan residues or the circular dichroism (CD) at 217 nm with salt has identified a structural form at low (<0.1 M) concentration of salt. This structural form (L) exhibits increased solvent exposure of W side chain(s) and decreased level of secondary structure compared to the native (N) protein at high concentrations of salt. The L-form, however, contains significantly higher levels of both secondary and tertiary structures compared to the form (U) found in highly denaturing conditions such as 8 M urea. The structural integrity of the L-form was highly pH dependent while that of N- or U-form was not. The pH dependence of either fluorescence intensity or CD of the L-form showed the presence of two apparent pK values: approximately 5 and approximately 10. The structural integrity of the L-form at low (<5) pH was very similar to that of the N-form. However, titration with denaturants showed that the low pH L-form is significantly less stable than the N-form. The increased destabilization of the L-form with the increase in pH was interpreted to be due to mutual Coulombic repulsion of carboxylate side chains (pK approximately 6) and due to the disruption of salt bridge(s) between ionized carboxylates and protonated amino groups (pK approximately 10). Estimation of solvent accessibility of W residues by fluorescence quenching, and measurement of decay kinetics of fluorescence intensity and anisotropy strongly support the above model. Polylysine interacted stoichiometrically with the L-form of ferredoxin resulting in nativelike structure. In conclusion, our studies show that high concentration of salt stabilizes the haloarchaeal ferredoxin in two ways: (i) neutralization of Coulombic repulsion among carboxyl groups of the acidic residues, and (ii) salting out of hydrophobic residues leading to their burial and stronger interaction. 相似文献
7.
8.
M K Johnson J E Morningstar D E Bennett B A Ackrell E B Kearney 《The Journal of biological chemistry》1985,260(12):7368-7378
Reconstitutively active and inactive succinate dehydrogenase have been investigated by low temperature magnetic circular dichroism (MCD) and EPR spectroscopy and room temperature CD and absorption spectroscopy. Reconstitutively active succinate dehydrogenase is found to contain three spectroscopically distinct Fe-S clusters: S1, S2, and S3. In agreement with previous studies, MCD and CD spectroscopy confirm that center S1 is a succinate-reducible [2Fe-2S]2+,1+ center. The MCD characteristics of center S2 identify it as a dithionite-reducible [4Fe-4S]2+,1+ similar to those in bacterial ferredoxins. EPR power saturation studies and the weakness of the EPR signal from reduced S2 indicate that there is a weak magnetic interaction between centers S1 and S2 in their paramagnetic, S = 1/2, reduced states. Center S3 is identified both by the form of the MCD spectrum and the characteristic magnetization behavior as a reduced [3Fe-xS] center in both succinate- and dithionite-reduced reconstitutively active succinate dehydrogenase. Arguments are presented in favor of centers S2 and S3 being separate centers rather than interconversion products of the same cluster. Reconstitutively inactive succinate dehydrogenase is found to be deficient in center S3. These results resolve many of the controversies concerning the Fe-S cluster content of succinate dehydrogenase and reconcile published EPR data with analytical and core extrusion studies. Moreover, they indicate that center S3 is a necessary requirement for reconstitutive activity and suggest that it is able to sustain ubiquinone reductase activity as a [3Fe-xS] center. 相似文献
9.
IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU 总被引:12,自引:0,他引:12
Iron-sulfur cluster biosynthesis in both prokaryotic and eukaryotic cells is known to be mediated by two highly conserved proteins, termed IscS and IscU in prokaryotes. The homodimeric IscS protein has been shown to be a cysteine desulfurase that catalyzes the reductive conversion of cysteine to alanine and sulfide. In this work, the time course of IscS-mediated Fe-S cluster assembly in IscU was monitored via anaerobic anion exchange chromatography. The nature and properties of the clusters assembled in discrete fractions were assessed via analytical studies together with absorption, resonance Raman, and M?ssbauer investigations. The results show sequential cluster assembly with the initial IscU product containing one [2Fe-2S](2+) cluster per dimer converting first to a form containing two [2Fe-2S](2+) clusters per dimer and finally to a form that contains one [4Fe-4S](2+) cluster per dimer. Both the [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU are reductively labile and are degraded within minutes upon being exposed to air. On the basis of sequence considerations and spectroscopic studies, the [2Fe-2S](2+) clusters in IscU are shown to have incomplete cysteinyl ligation. In addition, the resonance Raman spectrum of the [4Fe-4S](2+) cluster in IscU is best interpreted in terms of noncysteinyl ligation at a unique Fe site. The ability to assemble both [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU supports the proposal that this ubiquitous protein provides a scaffold for IscS-mediated assembly of clusters that are subsequently used for maturation of apo Fe-S proteins. 相似文献
10.
Hirokazu Kohbushi Shingo Kikuchi Hiroshi Hori 《Biochemical and biophysical research communications》2009,378(4):810-351
Iron-sulfur proteins play physiologically important roles in a variety of metabolic processes in eukaryotes. In plants, iron-sulfur cluster biosynthesis is known to take place both in mitochondria and chloroplasts. However no components that mediate iron-sulfur cluster delivery in the plant cell cytosol have been identified so far. Here we report identification and characterization of a cytosolic Nbp35 homolog named AtNbp35 from Arabidopsis thaliana. AtNbp35-deficient Arabidopsis mutants were seedling lethal. Unlike the previously characterized yeast ScNbp35 which forms a heterotetramer with ScCfd1, AtNbp35 forms a homodimer in the cytosol and can harbor both [4Fe-4S] and [2Fe-2S] clusters on its amino- and carboxyl-terminal domains, respectively. Taken together, our data suggest that Nbp35 plays a pivotal role in iron-sulfur cluster assembly and delivery in the plant cell cytosol as a bifunctional molecular scaffold. 相似文献
11.
The [2Fe-2S] protein from Azotobacter vinelandii that was previously known as iron-sulfur protein I, or Shethna protein I, has been shown to be encoded by a gene belonging
to the major nif gene cluster. Overexpression of this gene in Escherichia coli yielded a dimeric protein of which each subunit comprises 106 residues and contains one [2Fe-2S] cluster. The sequence of
this protein is very similar to that of the [2Fe-2S] ferredoxin from Clostridium pasteurianum (2FeCpFd), and the four cysteine ligands of the [2Fe-2S] cluster occur in the same positions. The A. vinelandii protein differs from the C. pasteurianum one by the absence of the N-terminal methionine, the presence of a five-residue C-terminal extension, and a lesser number
of acidic and polar residues. The UV-visible absorption and EPR spectra, as well as the redox potentials of the two proteins,
are nearly identical. These data show that the A. vinelandii FeS protein I, which is therefore proposed to be designated 2FeAvFdI, is the counterpart of the [2Fe-2S] ferredoxin from C. pasteurianum. The occurrence of the 2FeAvFdI-encoding gene in the nif gene cluster, together with the previous demonstration of a specific interaction between the 2FeCpFd and the nitrogenase MoFe protein, suggest that both proteins might be involved in nitrogen fixation, with possibly similar
roles.
Received: 21 December 1998 / Accepted: 1 March 1999 相似文献
12.
Crystal structure of the 2[4Fe-4S] ferredoxin from Chromatium vinosum: evolutionary and mechanistic inferences for [3/4Fe-4S] ferredoxins. 下载免费PDF全文
J. M. Moulis L. C. Sieker K. S. Wilson Z. Dauter 《Protein science : a publication of the Protein Society》1996,5(9):1765-1775
The crystal structure of the 2[4Fe-4S] ferredoxin from Chromatium vinosum has been solved by molecular replacement using data recorded with synchrotron radiation. The crystals were hexagonal prisms that showed a strong tendency to develop into long tubes. The hexagonal prisms diffracted to 2.1 A resolution at best, and a structural model for C. vinosum ferredoxin has been built with a final R of 19.2%. The N-terminal domain coordinates the two [4Fe-4S] clusters in a fold that is almost identical to that of other known ferredoxins. However, the structure has two unique features. One is a six-residue insertion between two ligands of one cluster forming a two-turn external loop; this short loop changes the conformation of the Cys 40 ligand compared to other ferredoxins and hampers the building of one NH...S H-bond to one of the inorganic sulfurs. The other remarkable structural element is a 3.5-turn alpha-helix at the C-terminus that covers one side of the same cluster and is linked to the cluster-binding domain by a six-residue external chain segment. The charge distribution is highly asymmetric over the molecule. The structure of C. vinosum ferredoxin strongly suggests divergent evolution for bacterial [3/4Fe-4S] ferredoxins from a common ancestral cluster-binding core. The unexpected slow intramolecular electron transfer rate between the clusters in C. vinosum ferredoxin, compared to other similar proteins, may be attributed to the unusual electronic properties of one of the clusters arising from localized changes in its vicinity rather than to a global structural rearrangement. 相似文献
13.
A Manodori G Cecchini I Schr?der R P Gunsalus M T Werth M K Johnson 《Biochemistry》1992,31(10):2703-2712
Site-directed mutants of Escherichia coli fumarate reductase in which FrdB Cys204, Cys210, and Cys214 were individually replaced by Ser and in which Val207 was replaced by Cys were constructed and overexpressed in a strain of E. coli lacking a wild-type copy of fumarate reductase and succinate dehydrogenase. The consequences of these mutations on bacterial growth, enzymatic activity, and the EPR properties of the constituent iron-sulfur clusters were investigated. The FrdB Cys204Ser, Cys210Ser, and Cys214Ser mutations result in enzymes with negligible activity that have dissociated from the membrane and consequently are incapable of supporting cell growth under conditions requiring a functional fumarate reductase. EPR studies indicate that these effects are associated with loss of both the [3Fe-4S] and [4Fe-4S] clusters, centers 3 and 2, respectively. In contrast, the FrdB Val207Cys mutation results in a functional membrane-bound enzyme that is able to support growth under anaerobic and aerobic conditions. However, EPR studies indicate that the indigenous [3Fe-4S]+,0 cluster (Em = -70 mV), center 3, has been replaced by a much lower potential [4Fe-4S]2+,+ cluster (Em = -350 mV), indicating that the primary sequence of the polypeptide determines the type of clusters assembled. The results of these studies afford new insights into the role of centers 2 and 3 in mediating electron transfer from menaquinol, the residues that ligate these clusters, and the intercluster magnetic interactions in the wild-type enzyme. 相似文献
14.
Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme. 相似文献
15.
J Telser B M Hoffman R LoBrutto T Ohnishi A L Tsai D Simpkin G Palmer 《FEBS letters》1987,214(1):117-121
Yeast mitochondrial complex III contains a subunit with a [2Fe-2S] cluster (the Rieske center) that has unusual physical and chemical properties. For apparently similar centers isolated from bacteria, it has been shown by electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) measurements that these [2Fe-2S] centers are coordinated by at least one and probably two nitrogen ligands. This work describes similar ENDOR and ESEEM studies on the intact mitochondrial complex. We find that this [2Fe-2S] cluster exhibits ESEEM and ENDOR properties that appear to be indistinguishable from those observed with the isolated bacterial systems. Furthermore, changes in EPR lineshape that occur as complex III is progressively reduced are not accompanied by any changes in the nitrogen coupling parameters. This spectroscopic evidence for nitrogen coordination is supported by published sequence data on four Rieske iron-sulfur subunits. It seems likely that this is a general characteristic of such [2Fe-2S] redox active centers. 相似文献
16.
Dihydroxy acid dehydratase, the third enzyme in the branched-chain amino acid biosynthetic pathway, has been purified to homogeneity (5000-fold) from spinach leaves. The molecular weights of dihydroxy acid dehydratase as determined by sodium dodecyl sulfate and native gel electrophoresis are 63,000 and 110,000, respectively, suggesting the native enzyme is a dimer. 2 moles of iron were found per mol of protein monomer. Chemical analyses of iron and labile sulfide gave an Fe/S2- ratio of 0.95. The EPR spectrum of dithionite-reduced enzyme (gavg = 1.91) is similar to spectra characteristic of Rieske Fe-S proteins and has a spin concentration of 1 spin/1.9 irons. These results strongly suggest that dihydroxy acid dehydratase contains a [2Fe-2S] cluster, a novel finding for enzymes of the hydrolyase class. In contrast to the Rieske Fe-S proteins, the redox potential of the Fe-S cluster is quite low (-470 mV). Upon addition of substrate, the EPR signal of the reduced enzyme changes to one typical of 2Fe ferredoxins (gavg = 1.95), and the visible absorption spectrum of the native enzyme shows substantial changes between 400 and 600 nm. Reduction of the Fe-S cluster decreases the enzyme activity by 6-fold under Vmax conditions. These results suggest the direct involvement of the [2Fe-2S] cluster of dihydroxy acid dehydratase in catalysis. Similar conclusions have been reached for the catalytic involvement of the [4Fe-4S] cluster of the hydrolyase aconitase (Emptage, M. H., Kent, T. A., Kennedy, M. C., Beinert, H., and Münck, E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 4674-4678). 相似文献
17.
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations. 相似文献
18.
Yeh AP Chatelet C Soltis SM Kuhn P Meyer J Rees DC 《Journal of molecular biology》2000,300(3):587-595
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes. 相似文献
19.
Heme, a near ubiquitous cofactor, is synthesized by most organisms. The essential step of insertion of iron into the porphyrin macrocycle is mediated by the enzyme ferrochelatase. Several ferrochelatases have been characterized, and it has been experimentally shown that a fraction of them contain [2Fe-2S] clusters. It has been suggested that all metazoan ferrochelatases have such clusters, but among bacteria, these clusters have been most commonly identified in Actinobacteria and a few other bacteria. Despite this, the function of the [2Fe-2S] cluster remains undefined. With the large number of sequenced genomes currently available, we comprehensively assessed the distribution of putative [2Fe-2S] clusters throughout the ferrochelatase protein family. We discovered that while rare within the bacterial ferrochelatase family, this cluster is prevalent in a subset of phyla. Of note is that genomic data show that the cluster is not common in Actinobacteria, as is currently thought based on the small number of actinobacterial ferrochelatases experimentally examined. With available physiological data for each genome included, we identified a correlation between the presence of the microbial cluster and aerobic metabolism. Additionally, our analysis suggests that Firmicute ferrochelatases are the most ancient and evolutionarily preceded the Alphaproteobacterial precursor to eukaryotic mitochondria. These findings shed light on distribution and evolution of the [2Fe-2S] cluster in ferrochelatases and will aid in determining the function of the cluster in heme synthesis. 相似文献
20.
Diffraction data of two crystal forms (forms I and II) of [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus have been collected to 0.92 A and 1.00 A resolutions, respectively, at 100 K using synchrotron radiation. Anisotropic temperature factors were introduced for all non-hydrogen atoms in the refinement with SHELX-97, in which stereochemical restraints were applied to the protein chain but not to the [4Fe-4S] cluster. The final crystallographic R-factors are 9.8 % for 7.0-0.92 A resolution data of the form I and 11.2 % for the 13.3-1.0 A resolution data of the form II. Many hydrogen atoms as well as multiple conformations for several side-chains have been identified. The present refinement has revised the conformations of several peptide bonds and side-chains assigned previously at 2.3 A resolution; the largest correction was that the main-chain of Pro1 and the side-chain of Lys2 were changed by rotating the C(alpha)-C bond of Lys2. Although the overall structures in the two crystal forms are very similar, conformational differences are observed in the two residues at the middle (Glu29 and Asp30) and the C-terminal residues, which have large temperature factors. The [4Fe-4S] cluster is a distorted cube with non-planar rhombic faces. Slight but significant compression of the four Fe-S bonds along one direction is observed in both crystal forms, and results in the D(2d) symmetry of the cluster. The compressed direction of the cluster relative to the protein is conserved in the two crystal forms and consistent with that in one of the clusters in Clostridium acidurici ferredoxin. 相似文献