首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multivariate BLUPs can be derived when data are a mixture of continuous traits and observed discrete traits controlled by logistic latent traits. Algorithms were developed for predicting discrete responses to BLUP selection, and latent responses when the selection process included additional culling on scores. These algorithms were Taylor expansions using well-known expressions such as the probabilities and the two first moments of the truncated multinormal distribution, after appropriate re-parametrizations. They were compared to very accurate quadrature integrations. The test examples were suggested by a situation found in chickens where selection can involve body weight and leg deformity described by two logistic latent variates. Quadratic Taylor expansions generally provided a good accuracy. Therefore, they could be recommended when quadrature methods are too demanding, e.g., for complex breeding schemes.  相似文献   

2.
Contrasting the genetic diversity of the human X chromosome (X) and autosomes has facilitated understanding historical differences between males and females and the influence of natural selection. Previous studies based on smaller data sets have left questions regarding how empirical patterns extend to additional populations and which forces can explain them. Here, we address these questions by analyzing the ratio of X-to-autosomal (X/A) nucleotide diversity with the complete genomes of 569 females from 14 populations. Results show that X/A diversity is similar within each continental group but notably lower in European (EUR) and East Asian (ASN) populations than in African (AFR) populations. X/A diversity increases in all populations with increasing distance from genes, highlighting the stronger impact of diversity-reducing selection on X than on the autosomes. However, relative X/A diversity (between two populations) is invariant with distance from genes, suggesting that selection does not drive the relative reduction in X/A diversity in non-Africans (0.842 ± 0.012 for EUR-to-AFR and 0.820 ± 0.032 for ASN-to-AFR comparisons). Finally, an array of models with varying population bottlenecks, expansions, and migration from the latest studies of human demographic history account for about half of the observed reduction in relative X/A diversity from the expected value of 1. They predict values between 0.91 and 0.94 for EUR-to-AFR comparisons and between 0.91 and 0.92 for ASN-to-AFR comparisons. Further reductions can be predicted by more extreme demographic events in excess of those captured by the latest studies but, in the absence of these, also by historical sex-biased demographic events or other processes.  相似文献   

3.
Lin Y  Dion V  Wilson JH 《Mutation research》2005,572(1-2):123-131
CAG.CTG repeat expansions cause more than a dozen neurodegenerative diseases in humans. To define the mechanism of repeat instability in mammalian cells we developed a selectable assay to detect expansions of CAG.CTG triplet repeats in Chinese hamster ovary (CHO) cells. We showed previously that long tracts of CAG.CTG repeats, embedded in an intron of the APRT gene, kill expression of the gene, rendering the cells APRT-. By contrast, tracts with fewer than 34 repeats allow sufficient expression to give APRT+ cells. Although it should be possible to use APRT+ cells with short repeats to assay for expansion events by selecting for APRT- cells, we find that APRT+ cells with 31 repeats are not killed by the standard APRT- selection protocol, most likely because they produce too little Aprt to incorporate sufficient 8-azaadenine into their adenine pool. To overcome this problem, we devised a new selection, which increases the proportion of the adenine pool contributed by the salvage pathway by partially inhibiting the de novo pathway. We show that APRT- CHO cells with 61 or 95 CAG.CTG repeats survive this selection, whereas cells with 31 repeats die. Using this selection system, we can select for expansion to as few as 39 repeats. Thus, this assay can monitor expansions across the critical boundary from the longest lengths of normal alleles to the shortest lengths of disease alleles.  相似文献   

4.
Mes TH 《Molecular ecology》2003,12(6):1555-1566
Mitochondrial ND4 sequences of populations of four species of parasitic nematodes of livestock were subjected to demographic analyses. Deviation from selective neutrality was detectable using the frequency spectrum of segregating sites and highly negative neutrality statistics. However, the mitochondrial data sets do not comply with the infinite-sites model that underlies these tests, and as a consequence, it was not established whether these features are solely a result of population expansion, or whether aspects of the molecular evolution of these mitochondrial regions are also involved. Coalescent analyses based on Fu's Fs neutrality test, which incorporated estimates of rate heterogeneity, the transition-transversion ratio and nucleotide bias, as well as analyses that are fairly robust to deviations from the infinite-sites model supported population expansion. Also analyses that do not depend on the infinite-sites model suggested historical population expansion of these nematodes. The very similar time since expansion, the absence of signatures of positive selection in ND4 and the logical association with human demography imply that selective sweeps of mitochondrial variants are less probable, and that expansion is the most likely scenario for the parasitic nematodes of livestock. The methods used to characterize the expansion have different assumptions and emphasize different aspects of expansions. The resulting restrictions on the interpretation of expansions are outlined.  相似文献   

5.
This study uses a combined methodological approach including phylogenetic, phylogeographic, and demographic analyses to understand the evolutionary history of the northern leopard frog, Rana pipiens. We tested hypotheses concerning how (or if) known geological events and key features of the species biology influenced the contemporary geographic and genetic distribution of R. pipiens. We assayed mitochondrial DNA variation from 389 individuals within 35 populations located throughout the species range. Our a priori expectations for patterns and processes influencing the current genetic structure of R. pipiens were supported by the data. However, our analyses revealed specific aspects of R. pipiens evolutionary history that were unexpected. The phylogenetic analysis indicated that R. pipiens is split into populations containing discrete eastern or western haplotypes, with the Mississippi River and Great Lakes region dividing the geographic ranges. Nested clade analysis indicated that the biological process most often invoked to explain the pattern of haplotype position is restricted gene flow with isolation by distance. Demographic analyses showed evidence of both historical bottlenecks and population expansions. Surprisingly, the genetic evidence indicated that the western haplotypes had significantly reduced levels of genetic diversity relative to the eastern haplotypes and that major range expansions occurred in both regions well before the most recent glacial retreat. This study provides a detailed history of how a widespread terrestrial vertebrate responded to episodic Pleistocene glacial events in North America. Moreover, this study illustrates how complementary methods of data analysis can be used to disentangle recent and ancient effects on the genetic structure of a species.  相似文献   

6.
A recent study of stickleback 'ecomorphs' generated by independent speciation events in different freshwater lakes suggests that, despite historical contingency, natural selection can run in surprisingly similar ways on multiple occasions.  相似文献   

7.
Evolution is a fundamentally population level process in which variation, drift and selection produce both temporal and spatial patterns of change. Statistical model fitting is now commonly used to estimate which kind of evolutionary process best explains patterns of change through time using models like Brownian motion, stabilizing selection (Ornstein–Uhlenbeck) and directional selection on traits measured from stratigraphic sequences or on phylogenetic trees. But these models assume that the traits possessed by a species are homogeneous. Spatial processes such as dispersal, gene flow and geographical range changes can produce patterns of trait evolution that do not fit the expectations of standard models, even when evolution at the local‐population level is governed by drift or a typical OU model of selection. The basic properties of population level processes (variation, drift, selection and population size) are reviewed and the relationship between their spatial and temporal dynamics is discussed. Typical evolutionary models used in palaeontology incorporate the temporal component of these dynamics, but not the spatial. Range expansions and contractions introduce rate variability into drift processes, range expansion under a drift model can drive directional change in trait evolution, and spatial selection gradients can create spatial variation in traits that can produce long‐term directional trends and punctuation events depending on the balance between selection strength, gene flow, extirpation probability and model of speciation. Using computational modelling that spatial processes can create evolutionary outcomes that depart from basic population‐level notions from these standard macroevolutionary models.  相似文献   

8.
Teasing apart the effects of natural selection and demography on current allele frequencies is challenging, due to both processes leaving a similar molecular footprint. In particular, when attempting to identify selection in species that have undergone a recent range expansion, the increase in genetic drift at the edges of range expansions (“allele surfing”) can be a confounding factor. To address this potential issue, we first assess the long‐range colonization history of the Aleppo pine across the Mediterranean Basin, using molecular markers. We then look for single nucleotide polymorphisms (SNPs) involved in local adaptation using: (a) environmental correlation methods (bayenv2 ), focusing on bioclimatic variables important for the species’ adaptation (i.e., temperature, precipitation and water availability); and (b) FST‐related methods (pcadapt ). To assess the rate of false positives caused by the allele surfing effect, these results are compared with results from simulated SNP data that mimics the species’ past range expansions and the effect of genetic drift, but with no selection. We find that the Aleppo pine shows a previously unsuspected complex genetic structure across its range, as well as evidence of selection acting on SNPs involved with the response to bioclimatic variables such as drought. This study uses an original approach to disentangle the confounding effects of drift and selection in range margin populations. It also contributes to the increased evidence that plant populations are able to adapt to new environments despite the expected accumulation of deleterious mutations that takes place during long‐range colonizations.  相似文献   

9.
The conceptual gap between ecological and historical biogeography is wide, although both disciplines are concerned with explaining how distributions have been shaped. A central aim of modern historical biogeography is to use a phylogenetic framework to reconstruct the geographic history of a group in terms of dispersals and vicariant events, and a number of analytical methods have been developed to do so. To date the most popular analytical methods in historical biogeography have been parsimony-based. Such methods can be classified into two groups based on the assumptions used. The first group assumes that vicariance between two areas creates common patterns of disjunct distributions across several taxa whereas dispersals and extinctions generate clade specific patterns. The second group of methods assumes that passive vicariance and within-area speciation have a higher probability of occurrence than active dispersal events and extinction. Typically, none of these methods takes into account the ecology of the taxa in question. I discuss why these methods can be potentially misleading if the ecology of the taxon is ignored. In particular, the vagility or dispersal ability of taxa plays a pivotal role in shaping the distributions and modes of speciation. I argue that the vagility of taxa should be explicitly incorporated in biogeographic analyses. Likelihood-based methods with models in which more realistic probabilities of dispersal and modes of speciation can be specified are arguably the way ahead. Although objective quantification will pose a challenge, the complete ignorance of this vital aspect, as has been done in many historical biogeographic analyses, can be dangerous. I use worked examples to show a simple way of utilizing such information, but better methods need to be developed to more effectively use ecological knowledge in historical biogeography.  相似文献   

10.
Slatkin M  Excoffier L 《Genetics》2012,191(1):171-181
Range expansions cause a series of founder events. We show that, in a one-dimensional habitat, these founder events are the spatial analog of genetic drift in a randomly mating population. The spatial series of allele frequencies created by successive founder events is equivalent to the time series of allele frequencies in a population of effective size ke, the effective number of founders. We derive an expression for ke in a discrete-population model that allows for local population growth and migration among established populations. If there is selection, the net effect is determined approximately by the product of the selection coefficients and the number of generations between successive founding events. We use the model of a single population to compute analytically several quantities for an allele present in the source population: (i) the probability that it survives the series of colonization events, (ii) the probability that it reaches a specified threshold frequency in the last population, and (iii) the mean and variance of the frequencies in each population. We show that the analytic theory provides a good approximation to simulation results. A consequence of our approximation is that the average heterozygosity of neutral alleles decreases by a factor of 1-1/(2ke) in each new population. Therefore, the population genetic consequences of surfing can be predicted approximately by the effective number of founders and the effective selection coefficients, even in the presence of migration among populations. We also show that our analytic results are applicable to a model of range expansion in a continuously distributed population.  相似文献   

11.
A fundamental issue in understanding human diversity is whether or not there are regular patterns and processes involved in cultural change. Theoretical and mathematical models of cultural evolution have been developed and are increasingly being used and assessed in empirical analyses. Here, we test the hypothesis that the rates of change of features of human socio-cultural organization are governed by general rules. One prediction of this hypothesis is that different cultural traits will tend to evolve at similar relative rates in different world regions, despite the unique historical backgrounds of groups inhabiting these regions. We used phylogenetic comparative methods and systematic cross-cultural data to assess how different socio-cultural traits changed in (i) island southeast Asia and the Pacific, and (ii) sub-Saharan Africa. The relative rates of change in these two regions are significantly correlated. Furthermore, cultural traits that are more directly related to external environmental conditions evolve more slowly than traits related to social structures. This is consistent with the idea that a form of purifying selection is acting with greater strength on these more environmentally linked traits. These results suggest that despite contingent historical events and the role of humans as active agents in the historical process, culture does indeed evolve in ways that can be predicted from general principles  相似文献   

12.
The Phoenicians were the dominant traders in the Mediterranean Sea two thousand to three thousand years ago and expanded from their homeland in the Levant to establish colonies and trading posts throughout the Mediterranean, but then they disappeared from history. We wished to identify their male genetic traces in modern populations. Therefore, we chose Phoenician-influenced sites on the basis of well-documented historical records and collected new Y-chromosomal data from 1330 men from six such sites, as well as comparative data from the literature. We then developed an analytical strategy to distinguish between lineages specifically associated with the Phoenicians and those spread by geographically similar but historically distinct events, such as the Neolithic, Greek, and Jewish expansions. This involved comparing historically documented Phoenician sites with neighboring non-Phoenician sites for the identification of weak but systematic signatures shared by the Phoenician sites that could not readily be explained by chance or by other expansions. From these comparisons, we found that haplogroup J2, in general, and six Y-STR haplotypes, in particular, exhibited a Phoenician signature that contributed > 6% to the modern Phoenician-influenced populations examined. Our methodology can be applied to any historically documented expansion in which contact and noncontact sites can be identified.  相似文献   

13.
Adaptation occurs by gene replacement (or transient balanced polymorphism). Replacement may be caused by selection (local or global) and/or genetic drift among alleles. In addition, historical events may blur the respective effects of selection and drift during the course of replacement. We address the relative importance of these processes in the evolution of insecticide resistance genes in the mosquito Culex pipiens. The resistance allele, Ester2, has a broad geographic distribution compared to the other resistance alleles. To distinguish between the different processes explaining this distribution, we reviewed the literature and analysed updated data from the Montpellier area of southern France. Overall, our data indicate that Ester2 prevails over other Ester resistance alleles in moderately treated areas. Such conditions are common and favour the hypothesis of selection acting at a local level. This places an emphasis on the importance of ecological conditions during the evolution of resistance. Finally, we highlight that historical events have contributed to its spread in some areas.  相似文献   

14.
The relative importance of natural selection in the diversification of organisms can be assessed indirectly using matrix correspondence. The present study determines the environmental and genetic correlates of microgeographical variation in the growth form, leaf form and flower morphology in populations of four Aeonium species from section Leuconium using partial regression methods. The phylogeny of the four species and the other 12 species in the section was deduced from amplified fragment length polymorphism (AFLP). Pubescence of floral organs and flower size correlate with the phylogeny while traits related to growth form, leaf form, flower construction and inflorescence size correlate with ecological factors. The variation in the latter four traits may therefore reflect selection by current ecological conditions while variation in pubescence and flower size may reflect historical events like neutral mutations, founder events and drift. Additionally, the morphological analyses revealed a large amount of variation in all traits within populations. This suggests a possible influence of microhabitat on the variation in morphology of Aeonium in the Canary Islands.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 76 , 521–533.  相似文献   

15.
The CD8 alphabetaT cell receptor repertoire in joint fluid of individuals with active psoriatic arthritis contained an average of 32 major oligoclonal expansions in many variable genes of the TCR beta chain (BV) families, as shown by beta-chain CDR3 length analysis. Interestingly, a small number of oligoclonal expansions were shared between simultaneous samples of joint fluid and blood; however, most expansions found in joint fluid were not identifiable in blood emphasizing the immunologic specificity of the clonal events for the inflamed joint at a given point of time. The CD4 T cell joint fluid repertoire contained fewer and smaller oligoclonal expansions also largely restricted to the joint, suggesting that CD4 T cells participate perhaps by interacting cognitively to generate the CD8 clones. The inferred amino acid sequence of a single CD8 oligoclonal expansion revealed that they usually are composed of one or a few structurally related clones at the amino acid sequence level with beta-chains that encode identical or highly homologous CDR3 motifs. These were not shared among patients. Moreover, several clones that encoded the same amino acid sequence were found to be structurally distinct at the nucleotide level, strongly implying clonal selection and expansion is operating at the level of specific TCR-peptide interactions. The findings support a model of psoriatic arthritis inflammation involving extensive and selective Ag, likely autoantigen, driven intra-articular CD4, and CD8 T cell clonal expansions.  相似文献   

16.
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.  相似文献   

17.
The geographical distribution of existing populations of horse chestnut (Aesculus hippocastanum L.) in Europe is determined by past demographic events during the Quaternary. In the present study we evaluate the imprints that northward expansions originated from common ancestry at southern Europe may have left on the present patterns of genetic variation for horse chestnut across the continent. Genetic diversity and levels of population structure in a European south–north gradient, ranging from the Balkans to the Scandinavian Peninsula, were determined with Amplified Fragment Length Polymorphism (AFLP) markers in 159 loci. A family of rarefaction techniques for the estimation of gene diversity was used to exclude potential confounding effects as a result of the unequal sample sizes. The results indicate that northern populations are not more genetically depleted than southern populations, thus suggesting that diversity for this species is not correlated with latitudinal distribution. Detailed hypotheses based on prediction models for different historical events associated with human‐mediated spread of cultivation are examined for a better understanding of the current genetic patterns of regional differentiation.  相似文献   

18.
The association between demographic history, genealogy and geographical distribution of mitochondrial DNA cytochrome b haplotypes was studied in the wood lemming (Myopus schisticolor), a species that is closely associated with the boreal forest of the Eurasian taiga zone from Scandinavia to the Pacific coast. Except for a major phylogeographic discontinuity (0.9% nucleotide divergence) in southeastern Siberia, only shallow regional genetic structure was detected across northern Eurasia. Genetic signs of demographic expansions imply that successive range contractions and expansions on different spatial scales represented the primary historical events that shaped geographical patterns of genetic variation. Comparison of phylogeographic structure across a taxonomically diverse array of other species that are ecologically associated with the taiga forest revealed similar patterns and identified two general aspects. First, the major south-north phylogeographic discontinuity observed in five out of six species studied in southeastern Siberia and the Far East implies vicariant separation in two different refugial areas. The limited distribution range of the southeastern lineages provides no evidence of the importance of the putative southeastern refugial area for postglacial colonization of northern Eurasia by boreal forest species. Second, the lack of phylogeographic structure associated with significant reciprocal monophyly and genetic signatures of demographic expansion in all nine boreal forest animal species studied to date across most of northern Eurasia imply contraction of each species to a single refugial area during the late Pleistocene followed by range expansion on a continental scale. Similar phylogeographic patterns observed in this taxonomically diverse set of organisms with different life histories and dispersal potentials reflect the historical dynamics of their shared environment, the taiga forest in northern Eurasia.  相似文献   

19.
We here argue that data from comparative studies of genome size and karyotypes provide important information for planning comparative research on genome evolution. We document for 39 species of sepsids that there is a four‐fold difference in genome size (151–618 Mbp). Mapping genome sizes onto a phylogenetic hypothesis identifies that this range is the result of five genome expansions and four genome contractions that we here define as changes in genome size of more than 50 Mbp. We then generate karyotype data for 10 species and find no changes in chromosome number. The study reveals that the “Oriental” clade of sepsids is a promising system for studying genome evolution because it has experienced three genome expansion events. These events can be compared with an expansion in the “Neotropical” clade in order to reveal the mechanisms that underlie genome expansion in Sepsidae. A review of the literature on genome sizes and karyotypes reveals that they have been poorly documented in Metazoa. This means that researchers interested in the evolution of genome expansions and contractions are currently not being able to identify appropriate target taxa for genome sequencing. We thus argue for more comparative research on genome sizes and karyotypes and point out that historically species were chosen for genome sequencing for reasons not related to genome evolution (e.g. small genome size, model species status, phylogenetic position, interesting phenotypes). We believe that it is now time to use a more genome‐centric selection criterion, where species for whole genome sequencing are selected based on their importance for understanding genome evolution.  相似文献   

20.
Toju H  Sota T 《Molecular ecology》2006,15(13):4161-4173
Japanese camellia (Camellia japonica) and its seed predator, the camellia weevil (Curculio camelliae), provide a notable example of a geographic mosaic of coevolution. In the species interaction, the offensive trait of the weevil (rostrum length) and the defensive trait of the plant (pericarp thickness) are involved in a geographically-structured arms race, and these traits and selective pressures acting on the plant defence vary greatly across a geographical landscape. To further explore the geographical structure of this interspecific interaction, we tested whether the geographical variation in the weevil rostrum over an 800-km range along latitude is attributed to local natural selection or constrained by historical (phylogeographical) events of local populations. Phylogeographical analyses of the mitochondrial DNA sequences of the camellia weevil revealed that this species has experienced differentiation into two regions, with a population bottleneck and subsequent range and/or population expansion within each region. Although these phylogeographical factors have affected the variation in rostrum length, analyses of competing factors for the geographical variation revealed that this pattern is primarily determined by the defensive trait of the host plant rather than by the effects of historical events of populations and a climatic factor (annual mean temperature). Thus, our study suggests the overwhelming strength of coevolutionary selection against the effect of historical events, which may have limited local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号