首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The cDNAs encoding the preprohormones of the regulatory peptides cholecystokinin (CCK) and the related gastrin have been identified in a number of vertebrate species. However, from birds only chicken preprogastrin is known. In the present study preproCCK cDNA was identified in two species of birds, ostrich and chicken. In addition, the molecular forms of the bioactive peptides expressed in the small intestine were characterized. Both preproCCKs contain mono basic processing sites for the production of CCK-70 and -8 as seen in turtle and bullfrog. However, compared to these species an unusually large proportion was processed to the small forms CCK-7 and -8 and only minute amounts to larger forms. The encoded preprohormones are very similar to each other and to turtle CCK. Furthermore, they also show a high degree of similarity to the CCKs identified in more distant vertebrates. This confirms that CCK is highly conserved among vertebrates while the structure of gastrin, the other member of the CCK/gastrin family, is considerably more variable.  相似文献   

4.
As a major actor of the brain-pituitary-gonad axis, GnRH has received considerable attention, mainly in vertebrates. Biochemical, molecular, neuroanatomical, pharmacological and physiological studies have mainly focused on the role of GnRH as a gonadotrophin-releasing factor and have led to a detailed knowledge of the hypophysiotrophic GnRH system, primarily in mammals, but also in fish. It is now admitted that the corresponding neurons develop from the olfactory epithelium and migrate into the forebrain during embryogenesis to establish connections with the median eminence in tetrapods or the pituitary in teleost fish. However, all vertebrates possess a second GnRH system, expressing a variant known as chicken GnRH-II in neurons of the synencephalon, whose functions are still under debate. In addition, many fish species express a third form, salmon GnRH, whose expression is restricted to neurons of the olfactory systems and the ventral telencephalon, with extensive projections in the brain and a minor contribution to the pituitary. In vertebrates, GnRHs are also expressed in the gonads where they act on cell proliferation and steroidogenesis in males, and apoptosis of granulosa cells and reinititaion of meiosis in females. These functions could possibly represent the primitive roles of GnRH-like peptides, as an increasing number of studies in invertebrate classes point to a more or less direct connection between GnRH-producing sensory neurons and the gonads. According to recent studies, GnRHs appear as very ancient peptides that emerged at least in the cnidarians, the first animals with a nervous system. GnRH-like peptides have been partially characterized in several classes of invertebrates notably in molluscs, echinoderms and prochordates in which effects on the reproductive functions, notably gamete release and steroidogeneis, have been evidenced. It is possible that, with the increasing complexity of metozoa, GnRH neurons have lost their direct connection with the gonad to specialize in the control of additional regulatory centers such as the hypophysis in vertebrates or the optic gland in cephalopods. However, reminiscent effects of GnRH functions at the gonadal level would have persisted due to local production of GnRHs in the gonad itself. Altogether, these data indicate that GnRHs were involved in the control of reproduction long before the appearance of pituitary gonadotrophs.  相似文献   

5.
Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif similar to the C-terminal of GnIH, suggesting that GnIH and NPFF have diverged from a common ancestor. Because GnIH and NPFF belong to the RFamide peptide family in vertebrates, protochordate RFamide peptides may provide important insights into the evolutionary origin of GnIH and NPFF. In this study, we identified a novel gene encoding RFamide peptides and two genes of their putative receptors in the amphioxus Branchiostoma japonicum. Molecular phylogenetic analysis and synteny analysis indicated that these genes are closely related to the genes of GnIH and NPFF and their receptors of vertebrates. We further identified mature RFamide peptides and their receptors in protochordates. The identified amphioxus RFamide peptides inhibited forskolin induced cAMP signaling in the COS-7 cells with one of the identified amphioxus RFamide peptide receptors expressed. These results indicate that the identified protochordate RFamide peptide gene is a common ancestral form of GnIH and NPFF genes, suggesting that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. GnIH gene and NPFF gene may have diverged by whole-genome duplication in the course of vertebrate evolution.  相似文献   

6.
7.
1. Insulin binding sites were characterized and quantified in snail (Helix aspersa) ganglia by incubation of tissue sections with 125I-porcine insulin, autoradiography with [3H]Ultrofilm, image analysis coupled to computer-assisted microdensitometry, and comparison with 125I-standards. Cellular localization was performed in the same sections by emulsion autoradiography. 2. Specific insulin binding sites were demonstrated in discretely localized groups of neurons of the cerebral, pleural, parietal, visceral, and pedal ganglia and in nerves. Scatchard analysis performed with consecutive sections from single animals revealed a single class of high-affinity insulin binding sites (Kd, 0.13 +/- 0.01 nM; Bmax, 157 +/- 10 fmol/mg protein). 3. Our results suggest that insulin may play a role as a neurotransmitter or neuromodulator in snail ganglia.  相似文献   

8.
9.
Abstract: Recombinant herpes simplex virus-1 encoding the rat preproenkephalin A (HSVLatEnk1) was generated for driving the expression of preproenkephalin A-derived peptides in dorsal root ganglia of rats in vivo. Three weeks after infection via the hind footpads, quantitative RT-PCR and in situ hybridization experiments showed a strong expression of preproenkephalin A mRNA in lumbar dorsal root ganglia. In addition, a 40–160% increase in radioimmunoassayable Met-enkephalin-like material concentrations was found in the dorsal spinal cord and dorsal root ganglia, respectively, at the lumbar level in HSVLatEnk1-infected rats as compared with animals infected with β-galactosidase-encoding recombinant herpes simplex virus-1 or control rats. These data demonstrate the efficacy of the preproenkephalin A encoding vector and suggest that it should help in elucidating the role of Met-enkephalin-containing primary afferent fibers in pain transmission and/or control.  相似文献   

10.
Fine-structural characteristics of synaptic contacts were investigated in the central nervous system of different species of lamellibranch molluscs. Neuropile of the ganglia is characterized by regular occurrence of ultrastructurally well-defined polarized chemical synapses resembling those described in other invertebrate species and vertebrates. In addition to the generally observed membrane thickenings, enhanced density of synaptic membranes, cleft material and vesicle clustering on the presynaptic membrane, synapses are occasionally characterized by other and pinocytotic invaginations. Synaptic connections were distinguished on the basis of the vesicle content of the presynaptic terminal. Different forms of synaptic configurations (divergence, convergence, presynaptic modification) were observed in the ganglia.  相似文献   

11.
Many animals develop left-right (LR) asymmetry in their internal organs. The mechanisms of LR asymmetric development are evolutionarily divergent, and are poorly understood in invertebrates. Therefore, we studied the genetic pathway of LR asymmetric development in Drosophila. Drosophila has several organs that show directional and stereotypic LR asymmetry, including the embryonic gut, which is the first organ to develop LR asymmetry during Drosophila development. In this study, we found that genes encoding components of the Wnt-signaling pathway are required for LR asymmetric development of the anterior part of the embryonic midgut (AMG). frizzled 2 (fz2) and Wnt4, which encode a receptor and ligand of Wnt signaling, respectively, were required for the LR asymmetric development of the AMG. arrow (arr), an ortholog of the mammalian gene encoding low-density lipoprotein receptor-related protein 5/6, which is a co-receptor of the Wnt-signaling pathway, was also essential for LR asymmetric development of the AMG. These results are the first demonstration that Wnt signaling contributes to LR asymmetric development in invertebrates, as it does in vertebrates. The AMG consists of visceral muscle and an epithelial tube. Our genetic analyses revealed that Wnt signaling in the visceral muscle but not the epithelium of the midgut is required for the AMG to develop its normal laterality. Furthermore, fz2 and Wnt4 were expressed in the visceral muscles of the midgut. Consistent with these results, we observed that the LR asymmetric rearrangement of the visceral muscle cells, the first visible asymmetry of the developing AMG, did not occur in embryos lacking Wnt4 expression. Our results also suggest that canonical Wnt/β-catenin signaling, but not non-canonical Wnt signaling, is responsible for the LR asymmetric development of the AMG. Canonical Wnt/β-catenin signaling is reported to have important roles in LR asymmetric development in zebrafish. Thus, the contribution of canonical Wnt/β-catenin signaling to LR asymmetric development may be an evolutionarily conserved feature between vertebrates and invertebrates.  相似文献   

12.
13.
14.
Jumonji (Jmj) proteins are histone demethylases, which control the identity of stem cells. Jmj genes were characterized from plants to mammals where they have been implicated in the epigenetic regulation of development. Despite the Pacific oyster Crassostrea gigas representing one of the most important aquaculture resources worldwide, the molecular mechanisms governing the embryogenesis and reproduction of this lophotrochozoan species remain poorly understood. However, annotations in the C. gigas EST library suggested the presence of putative Jumonji genes, raising the question of the conservation of this family of histone demethylases in the oyster.  相似文献   

15.
We report the characterization of a cDNA encoding a novel -RFamide neuropeptide precursor that is up-regulated during parasitation in the snail Lymnaea stagnalis. Processing of this precursor yields five structurally related neuropeptides, all but one ending with the C-terminal sequence -LFRFamide, as was confirmed by direct mass spectrometry of brain tissue. The LFRFamide gene is expressed in a small cluster of neurons in each buccal ganglion, three small clusters in each cerebral ganglion, and one cluster in each lateral lobe of the cerebral ganglia. Application of two of the LFRFamide peptides to neuroendocrine cells that control either growth and metabolism or reproduction induced similar hyperpolarizing K+-currents, and inhibited electrical activity. We conclude that up-regulation of inhibitory LFRFamide neuropeptides during parasitation probably reflects an evolutionary adaptation that allows endoparasites to suppress host metabolism and reproduction in order to fully exploit host energy recourses.  相似文献   

16.
Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction.  相似文献   

17.
The present study employed an in situ hybridisation technique to detect the expression of a number of FMRFamide-like peptide encoding (flp) genes, previously identified from Globodera pallida, in whole-mount preparations of the J(2) stage of this worm. gpflp-1, encoding the FMRFamide-related peptide (FaRP) KSAYMRFamide, was expressed in neurones associated with the circumpharyngeal nerve ring and specifically in a number of cell bodies in the lumbar ganglia of the perianal nerve ring. The lumbar ganglia and pre-anal ganglia along with the BDU neurones and a number of cells in the retrovesicular ganglion were observed to express gpflp-2, encoding KNKFEFIRFamide. gpflp-3 (encoding KHEYLRFamide) expression was localised to the anterior ganglion and a number of paired cells posterior to the circumpharyngeal nerve ring whilst expression of gpflp-4, encoding a number of -P(G/Q)VLRFamides, was localised to the retrovesicular ganglion. No expression of gpflp-5 was observed. Identification of the reactive cells has implicated distinct roles for the FaRPs encoded on these genes in regulation of both dorsal and ventral body wall muscles, the musculature of the vulva and in the function of a number of sensory structures in both the head and tail of G. pallida. Comparison with the expression patterns of analogous genes in Caenorhabditis elegans suggests that, whilst some of the encoded peptides are conserved between nematode species, their functions therein are distinct. Furthermore, the expression of some of these genes in a number of interneurones supports the idea that FaRPs fulfil neuromodulatory as well as neurotransmitter roles.  相似文献   

18.
Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria.  相似文献   

19.
家猫及其他猫科动物的生殖工程研究   总被引:1,自引:0,他引:1  
在脊椎动物中,猫科动物是一类比较特殊的动物类群,共有37种动物,除家猫外,其余均为珍稀或临近灭绝的濒危动物,因而了解家猫的生殖习性和生殖规律,尤其是了解家猫胚胎工程领域,如猫卵母细胞的体外成熟(in vitro maturation IVM),体外受精(in vitro fertilization,IVF),显微受精等,对于利用现代生殖技术研究和探讨非家猫猫科动物的繁殖和保护具有极为重要的借鉴意义。  相似文献   

20.
The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin (GTH) secretion. This review focuses on a family of neuropeptides, LPXRFamide (LPXRFa) peptides, which have been implicated in the regulation of GTH secretion. LPXRFa acts on the pituitary via a G protein-coupled receptor, LPXRFa-R, to enhance gonadal development and maintenance by increasing gonadotropin release and synthesis. Because LPXRFa exists and functions in several fish species, LPXRFa is considered to be a key neurohormone in fish reproduction control. The precursors to LPXRFamide peptides encoded plural LPXRFamide peptides and were highly divergent in vertebrates, particularly in lower vertebrates. Tissue distribution analyses indicated that LPXRFamide peptides were highly concentrated in the hypothalamus and other brainstem regions. In view of the localization and expression of LPXRFamide peptides in the hypothalamo-hypophysial system, LPXRFamide peptide in fish increase GTH release in vitro and in vivo. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of LPXRFa, a newly discovered key neurohormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号