首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A triad of tyrosine residues (Y152–154) in the cytochrome c1 subunit (C1) of the Rhodobacter capsulatus cytochrome bc1 complex (BC1) is ideally positioned to interact with cytochrome c2 (C2). Mutational analysis of these three tyrosines showed that, of the three, Y154 is the most important, since its mutation to alanine resulted in significantly reduced levels, destabilization, and inactivation of BC1. A second-site revertant of this mutant that regained photosynthetic capacity was found to have acquired two further mutations—A181T and A200V. The Y152Q mutation did not change the spectral or electrochemical properties of C1, and showed wild-type enzymatic C2 reduction rates, indicating that this mutation did not introduce major structural changes in C1 nor affect overall activity. Mutations Y153Q and Y153A, on the other hand, clearly affect the redox properties of C1 (e.g. by lowering the midpoint potential as much as 117 mV in Y153Q) and the activity by 90% and 50%, respectively. A more conservative Y153F mutant on the other hand, behaves similarly to wild-type. This underscores the importance of an aromatic residue at position Y153, presumably to maintain close packing with P184, which modeling indicates is likely to stabilize the sixth heme ligand conformation.  相似文献   

2.
Yeast cytochrome c1 is a component of complex III, an oligomeric enzyme of the mitochondrial respiratory chain. In order to investigate the structural requirement of cytochrome c1 for the function and assembly of the enzyme, we used an in vivo complementation assay to determine whether or not an in vitro mutated cytochrome c1 is functional. A yeast mutant whose nuclear cytochrome c1 gene was specifically inactivated was constructed by means of a gene disruption technique. The mutant was unable to respire, and lacked spectrally and immunochemically detectable cytochrome c1. These defects disappeared on the introduction of a plasmid carrying the cytochrome c1 gene coding the wild-type molecule or one coding a mutant molecule lacking the carboxyl (C)-terminal 17 amino acid residues. On the other hand, another mutant gene with a deletion corresponding to the C-terminal 71 residues showed no such ability. These results suggest that the region between the C-terminal 17 and 71 residues is necessary for the function of cytochrome c1.  相似文献   

3.
Li ZL  Burnap RL 《Biochemistry》2001,40(34):10350-10359
Mutations D1-R64E, D1-R64Q, and D1-R64V in the putative calcium-binding lumenal interhelical a-b loop of the photosystem II (PSII) D1 protein were characterized in terms of impact on growth, extrinsic protein binding, photoactivation, and properties of the H(2)O-oxidation complex. The D1-R64E charge reversal mutation greatly weakened the binding of the extrinsic manganese-stabilizing protein (MSP) and, to a considerably lesser extent, weakened the binding of cytochrome c(550) (c550). Both D1-R64Q and D1-R64E exhibited an increased requirement for Ca(2+) in the cell growth medium. Bare platinum electrode measurements of O(2)-evolving membranes showed a retarded appearance of O(2) following single turn-over flashes, especially in the case of the D1-R64E mutant. The D1-R64E mutant also had a pronounced tendency to lose O(2) evolution activity in the dark and exhibited an increased relative quantum yield of photoactivation, which are characteristics shared by mutants that lack extrinsic proteins. S(2) and S(3) decay measurements in the isolated membranes indicate that D1-R64E and D1-R64Q have faster decays of these higher S-states as compared to the wild-type. However, fluorescence decay in the presence of DCMU, which monitors primarily Q(A)(-) charge recombination with PSII donors, showed somewhat slower decays. Taken together, the fluorescence and S-state decay indicate that the midpoint of either Q(B)(-) has been modified to be more negative in the mutants or that a recombination path presumably involving either Q(B)(-) or Y(D) has become kinetically more accessible.  相似文献   

4.
Gong X  Yu L  Yu CA 《Biochemistry》2006,45(37):11122-11129
In bacterial cytochrome b of the cytochrome bc(1) complex, there is an extra fragment located between the amphipathic helix ef and the transmembrane helix F compared to the mitochondrial counterparts. In this work, mutants at various positions of this extra fragment were generated in Rhodobacter sphaeroides in an effort to investigate its specific role in the bacterial bc(1) complex. The total deletion [cytb-Delta(309-326)] and alanine substitution [cytb-(309-326)A] mutant complexes have about 20% of the bc(1) activity found in the wild-type complex. Mutant complexes of cytb-(309-311)A, cytb-(312-314)A, cytb-(315-317)A, cytb-(318-321)A, cytb-(322-323)A, cytb-(324-326)A, cytb-(F323A), and cytb-(S322A) have respectively 87%, 85%, 89%, 100%, 32%, 90%, 100%, and 32% of the bc(1) activity, indicating that the S322 of cytochrome b is important. EPR spectral analysis reveals that the [2Fe-2S] cluster in the cytb-(S322A) mutant complex has a broadened and shifted g(x)() signal (g = 1.76). The rate of superoxide anion (O(2)(*)(-)) generation is 4 times higher in the cytb-(S322A) mutant complex than in the wild-type or mutant complexes of S322T, S322Y, or S322C. These results support the idea that alanine substitution at S322 of cytochrome b causes conformational changes at the Q(o) site by weakening the binding between cytochrome b and ISP through hydrogen bonding provided by the hydroxyl group of this residue. This change facilitates electron leakage from the Q(o) site for reaction with molecular oxygen to form superoxide anion, thus decreasing bc(1) activity.  相似文献   

5.
The reaction between cytochrome c (Cc) and Rhodobacter sphaeroides cytochrome c oxidase (CcO) was studied using a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine 55 (Ru-55-Cc). Flash photolysis of a 1:1 complex between Ru-55-Cc and CcO at low ionic strength results in electron transfer from photoreduced heme c to Cu(A) with an intracomplex rate constant of k(a) = 4 x 10(4) s(-1), followed by electron transfer from Cu(A) to heme a with a rate constant of k(b) = 9 x 10(4) s(-1). The effects of CcO surface mutations on the kinetics follow the order D214N > E157Q > E148Q > D195N > D151N/E152Q approximately D188N/E189Q approximately wild type, indicating that the acidic residues Asp(214), Glu(157), Glu(148), and Asp(195) on subunit II interact electrostatically with the lysines surrounding the heme crevice of Cc. Mutating the highly conserved tryptophan residue, Trp(143), to Phe or Ala decreased the intracomplex electron transfer rate constant k(a) by 450- and 1200-fold, respectively, without affecting the dissociation constant K(D). It therefore appears that the indole ring of Trp(143) mediates electron transfer from the heme group of Cc to Cu(A). These results are consistent with steady-state kinetic results (Zhen, Y., Hoganson, C. W., Babcock, G. T., and Ferguson-Miller, S. (1999) J. Biol. Chem. 274, 38032-38041) and a computational docking analysis (Roberts, V. A., and Pique, M. E. (1999) J. Biol. Chem. 274, 38051-38060).  相似文献   

6.
We have changed nine conserved aromatic amino acids by site-directed mutagenesis of the cloned iron-sulfur protein gene to determine if any of these residues form an obligatory conduit for electron transfer within the iron-sulfur protein of the yeast cytochrome bc1 complex. The residues include W111, F117, W152, F173, W176, F177, H184, Y205 and F207. Greater than 70% of the catalytic activity was retained for all of the mutated iron-sulfur proteins, except for those containing a W152L and a W176L-F177L double mutation, for which the activity was approximately 45%. The crystal structures of the bc1 complex indicate that F177 and H184 are at the surface of the iron-sulfur protein near the surface of cytochrome c1, but not directly in a linear pathway between the iron-sulfur cluster and the c1 heme. The pre-steady-state rates of reduction of cytochromes b and c1 in mutants in which F177 and H184 were changed to non-aromatic residues were approximately 70-85% of the wild-type rates. There was a large decrease in iron-sulfur protein levels in mitochondrial membranes resulting from the W152L mutation and the W176L-F177L double mutation, and a small decrease for the Y205L, W176L and F177L mutations. This indicates that the decreases in activity resulting from these amino acid changes are due to instability of the altered proteins. These results show that these aromatic amino acids are unnecessary for electron transfer, but several are required for structural stability.  相似文献   

7.
Cloning and analysis of the Neurospora crassa gene for cytochrome c heme lyase   总被引:11,自引:0,他引:11  
The cyt-2-1 mutant of Neurospora crassa is deficient in cytochromes aa3 and c and in cytochrome c heme lyase activity (Mitchell, M.B., Mitchell, H.K., and Tissieres, A. (1953) Proc. Natl. Acad. Sci. U.S.A. 39, 606-613; Nargang, F.E., Drygas, M.E., Kwong, P.L., Nicholson, D.W., and Neupert, W. (1988) J. Biol. Chem. 263, 9388-9394). By rescue of the slow growth character of the cyt-2-1 mutant, we have cloned the cyt-2+ gene from a N. crassa genomic library using sib selection. Analysis of the DNA sequence of the cyt-2+ gene revealed an open reading frame of 346 amino acids that has homology to the yeast cytochrome c heme lyase. The open reading frame is interrupted by two short introns. Codon usage and Northern hybridization analysis suggest that the cyt-2 gene is expressed at low levels. The cyt-2-1 mutant allele was cloned from a partial cyt-2-1 gene bank using the wild-type gene as a probe. Sequence analysis of the mutant gene revealed a 2-base (CT) deletion that alters the reading frame for 21 codons before generating an early stop codon in the protein-coding sequence. It was previously suggested that the cyt-2-1 mutation inactivates one of two regulatory circuits controlling the production of cytochrome aa3. The finding that the cyt-2-1 mutation affects the coding sequence for cytochrome c heme lyase provides a direct explanation for the deficiency of cytochrome c in the mutant and suggests that the lack of cytochrome aa3 is a regulatory response to the deficiency of cytochrome c.  相似文献   

8.
To determine the interaction site for cytochrome c (Cc) on cytochrome c oxidase (CcO), a number of conserved carboxyl residues in subunit II of Rhodobacter sphaeroides CcO were mutated to neutral forms. A highly conserved tryptophan, Trp(143), was also mutated to phenylalanine and alanine. Spectroscopic and metal analyses of the surface carboxyl mutants revealed no overall structural changes. The double mutants D188Q/E189N and D151Q/E152N exhibit similar steady-state kinetic behavior as wild-type oxidase with horse Cc and R. sphaeroides Cc(2), showing that these residues are not involved in Cc binding. The single mutants E148Q, E157Q, D195N, and D214N have decreased activities and increased K(m) values, indicating they contribute to the Cc:CcO interface. However, their reactions with horse and R. sphaeroides Cc are different, as expected from the different distribution of surface lysines on these cytochromes c. Mutations at Trp(143) severely inhibit activity without changing the K(m) for Cc or disturbing the adjacent Cu(A) center. From these data, we identify a Cc binding area on CcO with Trp(143) and Asp(214) close to the site of electron transfer and Glu(148), Glu(157), and Asp(195) providing electrostatic guidance. The results are completely consistent with time-resolved kinetic measurements (Wang, K., Zhen, Y., Sadoski, R., Grinnell, S., Geren, L., Ferguson-Miller, S., Durham, B., and Millett, F. (1999) J. Biol. Chem. 274, 38042-38050) and computational docking analysis (Roberts, V. A., and Pique, M. E. (1999) J. Biol. Chem. 274, 38051-38060).  相似文献   

9.
Electron transfer from the Rieske iron-sulfur protein to cytochrome c(1) (cyt c(1)) in the Rhodobacter sphaeroides cytochrome bc(1) complex was studied using a ruthenium dimer complex, Ru(2)D. Laser flash photolysis of a solution containing reduced cyt bc(1), Ru(2)D, and a sacrificial electron acceptor results in oxidation of cyt c(1) within 1 micros, followed by electron transfer from the iron-sulfur center (2Fe-2S) to cyt c(1) with a rate constant of 80,000 s(-1). Experiments were carried out to evaluate whether the reaction was rate-limited by true electron transfer, proton gating, or conformational gating. The temperature dependence of the reaction yielded an enthalpy of activation of +17.6 kJ/mol, which is consistent with either rate-limiting conformational gating or electron transfer. The rate constant was nearly independent of pH over the range pH 7 to 9.5 where the redox potential of 2Fe-2S decreases significantly due to deprotonation of His-161. The rate constant was also not greatly affected by the Rieske iron-sulfur protein mutations Y156W, S154A, or S154A/Y156F, which decrease the redox potential of 2Fe-2S by 62, 109, and 159 mV, respectively. It is concluded that the electron transfer reaction from 2Fe-2S to cyt c(1) is controlled by conformational gating.  相似文献   

10.
Human disease-related mutations in cytochrome b studied in yeast   总被引:1,自引:0,他引:1  
Several mutations in the mitochondrially encoded cytochrome b have been reported in patients. To characterize their effect, we introduced six "human" mutations, namely G33S, S152P, G252D, Y279C, G291D, and Delta252-259 in the highly similar yeast cytochrome b. G252D showed wild type behavior in standard conditions. However, Asp-252 may interfere with structural lipid and, in consequence, destabilize the enzyme assembly, which could explain the pathogenicity of the mutation. The mutations G33S, S152P, G291D, and Delta252-259 were clearly pathogenic. They caused a severe decrease of the respiratory function and altered the assembly of the iron-sulfur protein in the bc(1) complex, as observed by immunodetection. Suppressor mutations that partially restored the respiratory function impaired by S152P or G291D were found in or close to the hinge region of the iron-sulfur protein, suggesting that this region may play a role in the stable binding of the subunit to the bc(1) complex. Y279C caused a significant decrease of the bc(1) function and perturbed the quinol binding. The EPR spectra showed an altered signal, indicative of a lower occupancy of the Q(o) site. The effect of human mutation of residue 279 was confirmed by another change, Y279A, which had a more severe effect on Q(o) site properties. Thus by using yeast as a model system, we identified the molecular basis of the respiratory defect caused by the disease mutations in cytochrome b.  相似文献   

11.
Y Wu  Y Wang  C Qian  J Lu  E Li  W Wang  J Lu  Y Xie  J Wang  D Zhu  Z Huang  W Tang 《European journal of biochemistry》2001,268(6):1620-1630
Using 1617 meaningful NOEs with 188 pseudocontact shifts, a family of 35 conformers of oxidized bovine microsomal cytochrome b5 mutant (E44/48/56A/D60A) has been obtained and is characterized by good resolution (rmsd to the mean structure are 0.047 +/- 0.007 nm and 0.095 +/- 0.008 nm for backbone and heavy atoms, respectively). The solution structure of the mutant, when compared with the X-ray structure of wild-type cytochrome b(5), has no significant changes in the whole folding and secondary structure. The binding between cytochrome b(5) and cytochrome c shows that the association constant of the mutant-cytochrome c complex is much lower than the one for wild-type complex (2.2 x 10(4) M(-1) vs. 5.1 x 10(3) M(-1)). The result suggests the four acidic residues have substantial effects on the formation of the complex between cytochrome b(5) and cytochrome c, and therefore it is concluded reasonably that the electrostatic interaction plays an important role in maintaining the stability and specificity of the complex formed. The competition between the ferricytochrome b(5) mutant and [Cr(oxalate)(3)](3-) for ferricytochrome c shows that site III of cytochrome c, which is a strong binding site to wild-type cytochrome b(5), still binds to the mutant with relatively weaker strength. Our results indicate that certain bonding geometries do occur in the interaction between the present mutant and cytochrome c and these geometries, which should be quite different from the ones of the Salemme and Northrup models.  相似文献   

12.
Iwaki M  Osyczka A  Moser CC  Dutton PL  Rich PR 《Biochemistry》2004,43(29):9477-9486
Redox transitions in the Rhodobacter capsulatus cytochrome bc(1) complex were investigated by perfusion-induced attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy combined with synchronous visible spectroscopy, in both the wild type and a cytochrome c(1) point mutant, M183K, in which the midpoint potential of heme was lowered from the wild-type value of 320 mV to 60 mV. Overall redox difference spectra of the wild type and M183K mutant were essentially identical, indicating that the mutation did not cause any major structural perturbation. Spectra were compared with data on the bovine bc(1) complex, and tentative assignments of several bands could be made by comparison with available data on model compounds and crystallographic structures. The bacterial spectra showed contributions from ubiquinone that were much larger than in the bovine enzyme, arising from additional bound and adventitious ubiquinone. The M183K mutant enabled selective reduction of the iron-sulfur protein which in turn allowed the IR redox difference spectra of ISP and cytochrome c(1) to be deconvoluted at high signal/noise ratios, and features of these spectra are interpreted in light of structural and mechanistic information.  相似文献   

13.
The reagent 1-ethyl-3-(3-[14C]trimethylaminopropyl)carbodiimide (ETC) was used to identify specific carboxyl groups on the cytochrome bc1 complex (ubiquinol-cytochrome c reductase, EC 1.10.2.2) involved in binding cytochrome c. Treatment of the cytochrome bc1 complex with 2 mM ETC led to inhibition of the electron transfer activity with cytochrome c. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that both the cytochrome c1 heme peptide and the Mr = 9175 "hinge" peptide were radiolabeled by ETC. In addition, a new band appeared at a position consistent with a 1:1 cross-linked cytochrome c1-hinge peptide species. Treatment of a 1:1 cytochrome bc1-cytochrome c complex with ETC led to the same inhibition of electron transfer activity observed with the uncomplexed cytochrome bc1, but to decreased radiolabeling of the cytochrome c1 heme peptide. Two new cross-linked species corresponding to cytochrome c-hinge peptide and cytochrome c-cytochrome c1 were formed in place of the cytochrome c1-hinge peptide species. In order to identify the specific carboxyl groups labeled by ETC, a purified cytochrome c1 preparation containing both the heme peptide and the hinge peptide was dimethylated at all the lysines to prevent internal cross-linking. The methylated cytochrome c1 preparation was treated with ETC and digested with trypsin and chymotrypsin, and the resulting peptides were separated by high pressure liquid chromatography. ETC was found to label the cytochrome c1 peptides 63-81, 121-128, and 153-179 and the hinge peptides 1-17 and 48-65. All of these peptides are highly acidic and contain one or more regions of adjacent carboxyl groups. The only peptide consistently protected from labeling by cytochrome c binding was 63-81, demonstrating that the carboxyl groups at residues 66, 67, 76, and 77 are involved in binding cytochrome c. These residues are relatively close to the heme-binding cysteine residues 37 and 40 and indicate a possible site for electron transfer from cytochrome c1 to cytochrome c.  相似文献   

14.
Sadoski RC  Engstrom G  Tian H  Zhang L  Yu CA  Yu L  Durham B  Millett F 《Biochemistry》2000,39(15):4231-4236
Electron transfer between the Rieske iron-sulfur protein (Fe(2)S(2)) and cytochrome c(1) was studied using the ruthenium dimer, Ru(2)D, to either photoreduce or photooxidize cytochrome c(1) within 1 micros. Ru(2)D has a charge of +4, which allows it to bind with high affinity to the cytochrome bc(1) complex. Flash photolysis of a solution containing beef cytochrome bc(1), Ru(2)D, and a sacrificial donor resulted in reduction of cytochrome c(1) within 1 micros, followed by electron transfer from cytochrome c(1) to Fe(2)S(2) with a rate constant of 90,000 s(-1). Flash photolysis of reduced beef bc(1), Ru(2)D, and a sacrificial acceptor resulted in oxidation of cytochrome c(1) within 1 micros, followed by electron transfer from Fe(2)S(2) to cytochrome c(1) with a rate constant of 16,000 s(-1). Oxidant-induced reduction of cytochrome b(H) was observed with a rate constant of 250 s(-1) in the presence of antimycin A. Electron transfer from Fe(2)S(2) to cytochrome c(1) within the Rhodobacter sphaeroides cyt bc(1) complex was found to have a rate constant of 60,000 s(-1) at 25 degrees C, while reduction of cytochrome b(H) occurred with a rate constant of 1000 s(-1). Double mutation of Ala-46 and Ala-48 in the neck region of the Rieske protein to prolines resulted in a decrease in the rate constants for both cyt c(1) and cyt b(H) reduction to 25 s(-1), indicating that a conformational change in the Rieske protein has become rate-limiting.  相似文献   

15.
The nuclear cyt-2-1 mutant of Neurospora crassa is characterized by a gross deficiency of cytochrome c (Bertrand, H., and Collins, R. A. (1978) Mol. Gen. Genet. 166, 1-13). The mutant produces mRNA that can be translated into apocytochrome c in vitro. Apocytochrome c is also synthesized in vivo in cyt-2-1, but it is rapidly degraded and thus does not accumulate in the cytosol. Mitochondria from wild-type cells bind apocytochrome c made in vitro from either wild-type or cyt-2-1 mRNA and convert it to holocytochrome c. This conversion depends on the addition of heme by cytochrome c heme lyase and is coupled to translocation of cytochrome c into the intermembrane space. Mitochondria from the cyt-2-1 strain are deficient in the ability to bind apocytochrome c. They are also completely devoid of cytochrome c heme lyase activity. These defects explain the inability of the cyt-2-1 mutant to convert apocytochrome c to the holo form and to import it into mitochondria.  相似文献   

16.
Two distinct genes encode the 93% homologous type 1 (placenta, peripheral tissues) and type 2 (adrenals, gonads) 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD/isomerase) in humans. Mutagenesis studies using the type 1 enzyme have produced the Y154F and K158Q mutant enzymes in the Y(154)-P-H(156)-S-K(158) motif as well as the Y269S and K273Q mutants from a second motif, Y(269)-T-L-S-K(273), both of which are present in the primary structure of the human type 1 3beta-HSD/isomerase. In addition, the H156Y mutant of the type 1 enzyme has created a chimera of the type 2 enzyme motif (Y(154)-P-Y(156)-S-K(158)) in the type 1 enzyme. The mutant and wild-type enzymes have been expressed and purified. The K(m) value of dehydroepiandrosterone is 13-fold greater, and the maximal turnover rate (K(cat)) is 2-fold greater for wild-type 2 3beta-HSD compared with the wild-type 1 3beta-HSD activity. The H156Y mutant of the type 1 enzyme has substrate kinetic constants for 3beta-HSD activity that are very similar to those of the wild-type 2 enzyme. Dixon analysis shows that epostane inhibits the 3beta-HSD activity of the wild-type 1 enzyme with 14-17-fold greater affinity compared with the wild-type 2 and H156Y enzymes. The Y154F and K158Q mutants exhibit no 3beta-HSD activity, have substantial isomerase activity, and utilize substrate with K(m) values similar to those of wild-type 1 isomerase. The Y269S and K273Q mutants have low, pH-dependent 3beta-HSD activity, exhibit only 5% of the maximal isomerase activity, and utilize the isomerase substrate very poorly. From these studies, a structural basis for the profound differences in the substrate and inhibition kinetics of the wild-type 1 and 2 3beta-HSD, plus a catalytic role for the Tyr(154) and Lys(158) residues in the 3beta-HSD reaction have been identified. These advances in our understanding of the structure/function of human type 1 and 2 3beta-HSD/isomerase may lead to the design of selective inhibitors of the type 1 enzyme not only in placenta to control the onset of labor but also in hormone-sensitive breast, prostate, and choriocarcinoma tumors to slow their growth.  相似文献   

17.
Hereditary enzymopenic methemoglobinemia is a rare disease that predominantly results from defects in either the erythrocytic (type I) or microsomal (type II) forms of the enzyme NADH:cytochrome b5 reductase (EC 1.6.2.2). All 25 currently identified type I and type II methemoglobinemia mutants have been expressed in Escherichia coli using a novel six histidine-tagged rat cytochrome b5/cytochrome b5 reductase fusion protein designated NADH:cytochrome c reductase (H6NCR). All 25 H6NCR variants were isolated and demonstrated to result in two groups of expression products. The first group of 16 mutants, which included the majority of the type I mutants, included K116Q, P131L, L139P, T183S, M193V, S194P, P211L, L215P, A245T, A245V, C270Y, E279K, V305R, V319M, M340-, and F365-, and yielded full-length fusion proteins that retained variable levels of NADH:cytochrome c reductase (NADH:CR) activity, ranging from approximately 2% (M340-) to 92% (K116Q) of that of the wild-type fusion protein. In contrast, the remaining nine mutants that represented the majority of the type II variants, comprised a second group that included Y109*, R124Q, Q143*, R150*, P162H, V172M, R226*, C270R, and R285*, and resulted in truncated H6NCR variants that retained the amino-terminal cytochrome b5 domain but were devoid of NADH:CR activity due to the absence of the cytochrome b5 reductase flavin domain. Kinetic analyses of the first group of full-length mutant fusion proteins indicated that values for both kcat and Km(NADH) were decreased and increased, respectively, indicating that the various mutations affected both substrate affinity and/or turnover. However, for the second group, the truncated products were the result of incomplete production of the carboxyl-terminal flavin-containing domain or instability of the expression products due to improper folding and/or lack of flavin incorporation.  相似文献   

18.
The sequence and organization of the Chlamydomonas reinhardtii genes encoding cytochrome c(1) ( Cyc1) and the Rieske-type iron-sulfur protein ( Isp), two key nucleus-encoded subunits of the mitochondrial cytochrome bc(1) complex, are presented. Southern hybridization analysis indicates that both Cyc1 and Isp are present as single-copy genes in C. reinhardtii. The Cyc1 gene spans 6404 bp and contains six introns, ranging from 178 to 1134 bp in size. The Isp gene spans 1238 bp and contains four smaller introns, ranging in length from 83 to 167 bp. In both genes, the intron/exon junctions follow the GT/AG rule. Internal conserved sequences were identified in only some of the introns in the Cyc1 gene. The levels of expression of Isp and Cyc1 genes are comparable in wild-type C. reinhardtii cells and in a mutant strain carrying a deletion in the mitochondrial gene for cytochrome b (dum-1). Nevertheless, no accumulation of the nucleus-encoded cytochrome c(1) or of core proteins I and II was observed in the membranes of the respiratory mutant. These data show that, in the green alga C. reinhardtii, the subunits of the cytochrome bc(1) complex fail to assemble properly in the absence of cytochrome b.  相似文献   

19.
Structural analysis of the dimeric mitochondrial cytochrome bc1 complex suggests that electron transfer between inter-monomer hemes bL-bL may occur during bc1 catalysis. Such electron transfer may be facilitated by the aromatic pairs present between the two bL hemes in the two symmetry-related monomers. To test this hypothesis, R. sphaeroides mutants expressing His6-tagged bc1 complexes with mutations at three aromatic residues (Phe-195, Tyr-199, and Phe-203), located between two bL hemes, were generated and characterized. All three mutants grew photosynthetically at a rate comparable to that of wild-type cells. The bc1 complexes prepared from mutants F195A, Y199A, and F203A have, respectively, 78%, 100%, and 100% of ubiquinol-cytochrome c reductase activity found in the wild-type complex. Replacing the Phe-195 of cytochrome b with Tyr, His, or Trp results in mutant complexes (F195Y, F195H, or F195W) having the same ubiquinol-cytochrome c reductase activity as the wild-type. These results indicate that the aromatic group at position195 of cytochrome b is involved in electron transfer reactions of the bc1 complex. The rate of superoxide anion (O2*) generation, measured by the chemiluminescence of 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-alpha]pyrazin-3-one hydrochloride-O2* adduct during oxidation of ubiquinol, is 3 times higher in the F195A complex than in the wild-type or mutant complexes Y199A or F203A. This supports the idea that the interruption of electron transfer between the two bL hemes enhances electron leakage to oxygen and thus decreases the ubiquinol-cytochrome c reductase activity.  相似文献   

20.
Mutating three conserved alanine residues in the tether region of the iron-sulfur protein of the yeast cytochrome bc(1) complex resulted in 22-56% decreases in enzymatic activity [Obungu et al. (2000) Biochim. Biophys. Acta 1457, 36-44]. The activity of the cytochrome bc(1) complex isolated from A86L was decreased 60% compared to the wild-type without loss of heme or protein and without changes in the 2Fe2S cluster or proton-pumping ability. The activity of the bc(1) complex from mutant A92R was identical to the wild-type, while loss of both heme and activity was observed in the bc(1) complex isolated from mutant A90I. Computer simulations indicated that neither mutation A86L nor mutation A92R affects the alpha-helical backbone in the tether region; however, the side chain of the leucine substituted for Ala-86 interacts with the side chain of Leu-89. The Arrhenius plot for mutant A86L was apparently biphasic with a transition observed at 17-19 degrees C and an activation energy of 279.9 kJ/mol below 17 degrees C and 125.1 kJ/mol above 17 degrees C. The initial rate of cytochrome c(1) reduction was lowered 33% in mutant A86L; however, the initial rate of cytochrome b reduction was unaffected, suggesting that movement of the tether region of the iron-sulfur protein is necessary for maximum rates of enzymatic activity. Substituting a leucine for Ala-86 impedes the unwinding of the alpha-helix and hence movement of the tether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号