首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gamma subunit of the Na,K-ATPase, a 7-kDa single-span membrane protein, is a member of the FXYD gene family. Several FXYD proteins have been shown to bind to Na,K-ATPase and modulate its properties, and each FXYD protein appears to alter enzyme kinetics differently. Different results have sometimes been obtained with different experimental systems, however. To test for effects of gamma in a native tissue environment, mice lacking a functional gamma subunit gene (Fxyd2) were generated. These mice were viable and without observable pathology. Prior work in the mouse embryo showed that gamma is expressed at the blastocyst stage. However, there was no delay in blastocele formation, and the expected Mendelian ratios of offspring were obtained even with Fxyd2-/- dams. In adult Fxyd2-/- mouse kidney, splice variants of gamma that have different nephron segment-specific expression patterns were absent. Purified gamma-deficient renal Na,K-ATPase displayed higher apparent affinity for Na+ without significant change in apparent affinity for K+. Affinity for ATP, which was expected to be decreased, was instead slightly increased. The results suggest that regulation of Na+ sensitivity is a major functional role for this protein, whereas regulation of ATP affinity may be context-specific. Most importantly, this implies that gamma and other FXYD proteins have their effects by local and not global conformation change. Na,K-ATPase lacking the gamma subunit had increased thermal lability. Combined with other evidence that gamma participates in an early step of thermal denaturation, this indicates that FXYD proteins may play an important structural role in the enzyme complex.  相似文献   

2.
Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste buds contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of taste buds. In confocal images of rat circumvallate taste buds, we counted 21.5 ± 0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7 ± 1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3), α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10–12 μm into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells.  相似文献   

3.
Formation of the vertebrate brain ventricles requires both production of cerebrospinal fluid (CSF), and its retention in the ventricles. The Na,K-ATPase is required for brain ventricle development, and we show here that this protein complex impacts three associated processes. The first requires both the alpha subunit (Atp1a1) and the regulatory subunit, Fxyd1, and leads to formation of a cohesive neuroepithelium, with continuous apical junctions. The second process leads to modulation of neuroepithelial permeability, and requires Atp1a1, which increases permeability with partial loss of function and decreases it with overexpression. In contrast, fxyd1 overexpression does not alter neuroepithelial permeability, suggesting that its activity is limited to neuroepithelium formation. RhoA regulates both neuroepithelium formation and permeability, downstream of the Na,K-ATPase. A third process, likely to be CSF production, is RhoA-independent, requiring Atp1a1, but not Fxyd1. Consistent with a role for Na,K-ATPase pump function, the inhibitor ouabain prevents neuroepithelium formation, while intracellular Na(+) increases after Atp1a1 and Fxyd1 loss of function. These data include the first reported role for Fxyd1 in the developing brain, and indicate that the Na,K-ATPase regulates three aspects of brain ventricle development essential for normal function: formation of a cohesive neuroepithelium, restriction of neuroepithelial permeability, and production of CSF.  相似文献   

4.
Summary The taste bud of the human fungiform papilla was examined by electron microscopy. Typical type I, type II, and type III cells were found along with contact sites with nerve endings. Vesicles in nerve fibers contacting type I and type II cells suggest that these cells may receive efferent impulses, whereas vesicles and granules in type III cells adjacent to (afferent) nerve fibers support the view that type III cells are sensory receptors. All of these features are virtually indistinguishable from those previously reported in fungiform taste buds of other mammals.Supported by fellowship from Campbell Institute for Food Research.  相似文献   

5.
We used the patch clamp technique to record from taste cells in vertical slices of the bullfrog (Rana catesbeiana) taste disc. Cell types were identified by staining with Lucifer yellow in a pipette after recording their electrophysiological properties. Cells could be divided into the following three groups: type Ib (wing) cells with sheet-like apical processes, type II (rod) cells with single thick rod-like apical processes and type III (rod) cells with thin rod-like apical processes. No dye-coupling was seen either between cells of the same type or between cells of different types. We focused on the voltage-gated inward currents of the three types of cells. Type Ib and type II cells exhibited tetrodotoxin (TTX)-sensitive voltage-gated Na+ currents. Surprisingly, type III cells showed TTX-resistant voltage-gated Na+ currents and exhibited a lack of TTX-sensitive Na+ currents. TTX-resistant voltage-gated Na+ currents in taste cells are reported for the first time here. The time constant for the inactivating portion of the voltage-gated inward Na+ currents of type III cells was much larger than that of type Ib and type II cells. Therefore, slow inactivation of inward Na+ currents characterizes type III cells. Amplitudes of the maximum peak inward currents of type III cells were smaller than those of type Ib and type II cells. However, the density (pA/pF) of the maximum peak inward currents of type III cells was much higher than that of type Ib cells and close to that of type II cells. No evidence of the presence of voltage-gated Ca2+ channels in frog taste cells has been presented up to now. In this study, voltage-gated Ba2+ currents were observed in type III cells but not in type Ib and type II cells when the bath solution was a standard Ba2+ solution containing 25 mM Ba2+. Voltage-gated Ba2+ currents were blocked by addition of 2 mM CoCl2 to the standard Ba2+ solution, suggesting that type III cells possess the voltage-gated Ca2+ channels and they do classical (calcium-influx) synaptic transmission. It appears that type III cells are taste receptor cells.  相似文献   

6.
We previously demonstrated that equilibrative nucleoside transporter 1 was expressed in taste cells, suggesting the existence of an adenosine signaling system, but whether or not the expression of an adenosine receptor occurs in rat taste buds remains unknown. Therefore, we examined the expression profiles of adenosine receptors and evaluated their functionality in rat circumvallate papillae. Among adenosine receptors, the mRNA for an adenosine A2b receptor (A2bR) was expressed by the rat circumvallate papillae, and its expression level was significantly greater in the circumvallate papillae than in the non-taste lingual epithelium. A2bR-immunoreactivity was detected primarily in type II taste cells, and partial, but significant expression was also observed in type III ones, but there was no immunoreactivity in type I ones. The cAMP generation in isolated epithelium containing taste buds treated with 500 μM adenosine or 10 μM BAY60-6583 was significantly increased compared to in the controls. These findings suggest that adenosine plays a role in signaling transmission via A2bR between taste cells in rats.  相似文献   

7.
Immunocytochemistry was used to investigate the distribution of cells reacting with specific antibodies against glutathione S-transferase (GST) mu and pi in rat circumvallate and foliate taste buds; the findings were confirmed by Western blotting. Double immunofluorescence staining for protein gene product (PGP) 9.5 and GST subunits allowed the classification of taste bud cells of both papillae into: (i) cells immunoreactive to either PGP 9.5 or GST subunit antibody; (ii) cells immunoreactive to both antibodies; and (iii) cells that did not react with either of these antibodies. Immunoelectron microscopy revealed that most GST subunit-immunoreactive cells seemed to be either type II or type III cells based on their ultrastructure. Since PGP 9.5 is now widely used as a marker for type III cells in mammalian taste buds, it seems reasonable to believe that most GST subunit-immunoreactive cells are type II cells. Whether cells immunoreactive for both PGP 9.5 and GST subunits constitute a small subpopulation of type III cells or whether they are intermediate forms between type II and III cells is under investigation. No type I cells reacted with antibodies against GST subunits in the present study. GST subunits in taste bud cells may participate in xenobiotic metabolism of certain substances exposed to taste pits, as already shown for olfactory epithelium.  相似文献   

8.
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.  相似文献   

9.
10.
Huang YA  Pereira E  Roper SD 《PloS one》2011,6(10):e25471
Several transmitter candidates including serotonin (5-HT), ATP, and norepinephrine (NE) have been identified in taste buds. Recently, γ-aminobutyric acid (GABA) as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO) cells stably co-expressing GABA(B) receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour) taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca(2+)-dependent; removing Ca(2+) from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III) cells and not from Receptor (Type II) cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses.  相似文献   

11.
Spiral ligament fibrocytes function in cochlear homeostasis, maintaining the endocochlear potential by participating in potassium recycling, and fibrocyte degeneration contributes to hearing loss. Their superficial location makes them amenable to replacement by cellular transplantation. Fibrocyte cultures offer one source of transplantable cells, but determining what fibrocyte types they contain and what phenotype transplanted cells may adopt is problematic. Here, we use immunogold electron microscopy to assess the relative expression of markers in native fibrocytes of the CD/1 mouse spiral ligament. Caldesmon and aquaporin 1 are expressed more in type III fibrocytes than any other type. S-100 is strongly expressed in types I, II, and V fibrocytes, and α1Na,K-ATPase is expressed strongly only in types II and V. By combining caldesmon or aquaporin 1 with S-100 and α1Na,K-ATPase, a ratiometric analysis of immunogold density distinguishes all except type II and type V fibrocytes. Other putative markers (creatine kinase BB and connective tissue growth factor) did not provide additional useful analytical attributes. By labeling serial sections or by double or triple labeling with combinations of three antibodies, this technique could be used to distinguish all except type II and type V fibrocytes in culture or after cellular transplantation into the lateral wall.  相似文献   

12.
Neural cell adhesion molecule (NCAM) is a type III cell marker in the taste buds. In order to clarify the cell type of Mash1-expressing cells in taste buds, expression of NCAM was examined in Mash1-expressing taste cells of adult mice in comparison with gustducin- and T1r3-expressing cells, using a combination of NCAM immunohistochemistry and in situ hybridization. About 98% of Mash1-expressing cells were NCAM immunopositive (IP), suggesting that Mash1-expressing cells should be categorized as type III cells. Unexpectedly, small subsets of gustducin- and T1r3-expressing cells were also found to be NCAM-IP, contradicting previous immunohistochemical studies in rats, in which gustducin-IP cells were observed specifically in type II cells, which do not have NCAM immunoreactivity. Examinations of developing taste buds showed temporal changes in the ratio of NCAM-IP cells in gustducin- and T1r3-expressing cells; the ratio of NCAM-IP cells in these gene-expressing cells were approximately 90% at 0.5 days after birth and decreased markedly during development. In contrast, the majority of Mash1-expressing cells showed constant NCAM immunoreactivity throughout development. In addition, BrdU-labeling experiments showed that the differentiation of Mash1-expressing cells precedes those of gustducin- and T1r3-expressing cells in taste buds of adult mice. These results suggest that T1r3- and gustducin-expressing cells are NCAM-IP at the beginning of cell differentiation, and that NCAM immunoreactivity in gustducin- and T1r3-expressing cells might remain from the previous developmental stage expressing Mash1.  相似文献   

13.
A taste bud is a sensory organ and consists of 50-100 spindle-shaped cells. The cells function as taste acceptors. They have characteristics of both epithelial and neuronal cells. A taste bud contains four types of cells, type I, type II, type III cells, and basal cells. Taste buds were isolated from a tongue of a p53-deficient mouse at day 12, and 11 clonal taste bud (TBD) cell lines were established. In immunochemical analysis, all cell lines expressed cytokeratin 18, gustducin, T1R3, and neural cellular adhesion molecule, but not GLAST. In RT-PCR analysis, shh was not expressed in any of the cell lines. Further analysis with RT-PCR was conducted on four cell lines. They expressed G protein-coupled taste receptors; T1R3, T2R8 for sweet, bitter, umami. And they also expressed α-ENaC for salty taste. While, a candidate for sour receptor HCN4 was expressed in TBD-a1 and TBD-a7 lines. And another candidate for sour receptor PKD1L3 was slightly expressed in TBD-a1 and TBD-c1.  相似文献   

14.
Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.  相似文献   

15.
G Blanco  R J Melton  G Sánchez  R W Mercer 《Biochemistry》1999,38(41):13661-13669
Different isoforms of the sodium/potassium adenosinetriphosphatase (Na,K-ATPase) alpha and beta subunits have been identified in mammals. The association of the various alpha and beta polypeptides results in distinct Na,K-ATPase isozymes with unique enzymatic properties. We studied the function of the Na,K-ATPase alpha4 isoform in Sf-9 cells using recombinant baculoviruses. When alpha4 and the Na pump beta1 subunit are coexpressed in the cells, Na, K-ATPase activity is induced. This activity is reflected by a ouabain-sensitive hydrolysis of ATP, by a Na(+)-dependent, K(+)-sensitive, and ouabain-inhibitable phosphorylation from ATP, and by the ouabain-inhibitable transport of K(+). Furthermore, the activity of alpha4 is inhibited by the P-type ATPase blocker vanadate but not by compounds that inhibit the sarcoplasmic reticulum Ca-ATPase or the gastric H,K-ATPase. The Na,K-ATPase alpha4 isoform is specifically expressed in the testis of the rat. The gonad also expresses the beta1 and beta3 subunits. In insect cells, the alpha4 polypeptide is able to form active complexes with either of these subunits. Characterization of the enzymatic properties of the alpha4beta1 and alpha4beta3 isozymes indicates that both Na,K-ATPases have similar kinetics to Na(+), K(+), ATP, and ouabain. The enzymatic properties of alpha4beta1 and alpha4beta3 are, however, distinct from the other Na pump isozymes. A Na, K-ATPase activity with similar properties as the alpha4-containing enzymes was found in rat testis. This Na,K-ATPase activity represents approximately 55% of the total enzyme of the gonad. These results show that the alpha4 polypeptide is a functional isoform of the Na,K-ATPase both in vitro and in the native tissue.  相似文献   

16.
Direct dose-dependent effects of angiotensin II on renal tubular sodium reabsorption have been demonstrated. Alterations in tubular sodium reabsorption may occur via modulation of renal Na,K-ATPase activity. Thus, these experiments were undertaken to ascertain whether angiotensin II could influence renal cortical Na,K-ATPase activity. Angiotensin II, 495 ng/microliters/h, or vehicle (controls) was infused for 24 h via miniosmotic pumps 48 h after rats were adrenalectomized and implanted with osmotic pumps containing 12.5 micrograms/microliters corticosterone (Treatment I) or both corticosterone and 0.2 microgram/microliter aldosterone (Treatment II), and in rats receiving 3% NaCl in their food (sodium loaded, Treatment III). Rats receiving Treatments I and III received saline to drink. Renal cortical microsomal membranes were prepared, and the effects of angiotensin II infusion on the K1/2 and Vmax for Na, K, and ATP determined. Angiotensin II infusions were associated with (i) a decrease (P less than 0.001) in the K1/2 for Na activation of Na,K-ATPase from 14 +/- 3 to 6 +/- 1 (n = 4 experiments), 16 +/- 1 to 12 +/- 1 (n = 5), and 12 +/- 3 to 7 +/- 1 (n = 5) mM (means +/- SE) for treatments I, II, and III, respectively; (ii) no changes in the K1/2 for K activation or the Km for ATP; (iii) no changes in the Vmax for Na, K, or ATP; and (iv) no change in Mg-ATPase activity. We conclude that angiotensin II infusion is associated with a decrease in the K1/2 of renal cortical Na,K-ATPase activity for sodium. This action of angiotensin II on the enzyme activity may contribute to the regulation of tubular sodium transport.  相似文献   

17.
Guanylyl cyclase activity was cytochemically demonstrated inrabbit foliate taste buds. The enzymatic activity was localizedin the apical portion (microvilli and neck) of taste bud cells.Especially strong activity was observed on the microvillousmembrane of type I (dark) cells and often on a blunt processof type III cells. The microvilli of type II (light) cells showedweak enzymatic activity. Considering that the apical portionof taste cells is a likely site of interaction between tastestimuli and the cells, the results support the idea that cyclicGMP is involved in taste transduction.  相似文献   

18.
Shh and Ptc are associated with taste bud maintenance in the adult mouse   总被引:1,自引:0,他引:1  
In mammals, taste receptor cells are organized into taste buds on tongue. Taste buds are trophically maintained by taste neurons and under continuous renewal, even in adults. We found that the receptor for Sonic hedgehog (Shh), Patched1 (Ptc), was expressed around taste buds where cells were proliferating, and that Shh was expressed within basal cells of taste buds. Denervation caused the loss of Shh and Ptc expression before the degeneration of taste buds.  相似文献   

19.
Zusammenfassung Im Epithel des Kopfdarms von Xiphophorus helleri Heckel (Poeciliidae, Cyprinodontiformes, Teleostei) kommen drei Typen von Geschmacksknospen vor, die in charakteristischer Weise über diesen Darmabschnitt verteilt sind: Organe des Typ I liegen in Epithelpapillen und überragen das durchschnittliche Epithelniveau deutlich. Sie finden sich an der Mundöffnung, speziell auf den Atemsegeln. Organe des Typ II sind nur wenig über das allgemeine Epithelniveau erhoben und kommen im Epithel von Mundhöhle, Gaumen und branchialem Vorderdarm vor. Geschmacksknospen des Typ III überragen das Epithelniveau nicht; sie liegen ausschließlich im verhornten Epithel des bezahnten metabranchialen Vorderdarms.Die Nervenfaserplexus der Geschmacksknospen des Typ I (und III) geben eine stärkere Reaktion auf Acetylcholinesterase (ACHE) als die des Typ II. Dagegen zeigen die Geschmacksknospen der Typen II und III eine deutlichere 5-Hydroxytryptamin (5-HT; Serotonin)-Fluoreszenz und eine stärkere Monoaminoxidase (MAO)-Aktivität als die des Typ I. Daraus wird geschlossen: 1) daß die elevierten Geschmacksknospen des Typ I neben der chemorezeptorischen möglicherweise auch eine ausschließlich cholinerg gesteuerte mechanorezeptorische Funktion haben, und 2) daß die nur wenig oder nicht über das Epithelniveau hinausragenden Geschmacksknospen der Typen II und III überwiegend chemorezeptorisch tätig sind (cholinerger Funktionsablauf unter aminerg-sympathischer Kontrolle).
The types of taste buds in fishesI. Morphological and neurohistochemical investigations on Xiphophorus helleri heckel (poeciliidae, cyprinodontiformes, teleostei)
Summary In sword-tails (Xiphophorus helleri), the taste buds within the epithelium of the head gut can be classified into three types, which are characteristically distributed in this part of the gut: Organs belonging to type I are lying within epithelial papillae and rise distinctly above the normal level of the epithelium. They are found in the mouth region, especially on the breathing valves. Organs of type II rise only a little above the normal level of the epithelium. They occur within the oral cavity, the palate and the branchial part of the foregut (pharynx). Taste buds belonging to type III never rise above the level of the epithelium; they are exclusively situated within the keratinized and teeth-bearing metabranchial foregut.On their basal nerve plexus, the taste buds of type I (and type III) are more acetylcholine esterase (ACHE)-reactive than those of type II. In contrast to type I organs, type II and type III taste buds show a more distinct 5-hydroxytryptamine (5-HT; serotonine)-fluorescence and clearer evidence of monoamino oxidase (MAO)-activity. Therefore following conclusions can be drawn: 1) In addition to their chemoreceptor function, the elevated type I taste buds may also have a mechanoreceptor function, which works exclusively in a cholinergic manner. 2) Type II and type III taste buds, which are only a little elevated or not elevated at all, mainly act as chemoreceptors with a cholinergic impulse transmission which is controlled by the aminergic sympathetic system.
Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

20.
Synthesis and assembly of functional mammalian Na,K-ATPase in yeast.   总被引:2,自引:0,他引:2  
The yeast Saccharomyces cerevisiae was investigated as an in vivo protein expression system for mammalian Na,K-ATPase. Unlike animal cells, yeast cells lack endogenous Na,K-ATPase. Expression of high affinity ouabain binding sites, ouabain-sensitive ATPase activity, or ouabain-sensitive p-nitrophenylphosphatase activity in membrane fractions of yeast cells was observed to require the expression of both alpha subunit and beta subunit polypeptides of Na,K-ATPase in the same cell. High affinity ouabain binding sites are also expressed at the cell surface of intact yeast cells containing both the alpha subunit and the beta subunit of Na,K-ATPase. These observations demonstrate that both the alpha subunit and the beta subunit of Na,K-ATPase are required for the expression of functional Na,K-ATPase activity and that yeast cells can correctly assemble this oligomeric membrane protein and transport it to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号