首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-specific proteases are rarely used in quantitative shotgun proteomics due to potentially high false discovery rates. Yet, there are instances when application of a non-specific protease is desirable to obtain sufficient sequence coverage of otherwise poorly accessible proteins or structural domains. Using the non-specific protease, proteinase K, we analyzed Saccharomyces cerevisiae preparations grown in (14)N rich media and (15)N minimal media and obtained relative quantitation from the dataset using normalized spectral abundance factors (NSAFs). A critical step in using a spectral counting based approach for quantitative proteomics is ensuring the inclusion of high quality spectra in the dataset. One way to do this is to minimize the false discovery rate, which can be accomplished by applying different filters to a searched dataset. Natural log transformation of proteinase K derived NSAF values followed a normal distribution and allowed for statistical analysis by the t-test. Using this approach, we generated a dataset of 719 unique proteins found in each of the three independent biological replicates, of which 84 showed a statistically significant difference in expression levels between the two growth conditions.  相似文献   

2.
To establish more advanced models of molecular dynamics within cells, protein characteristics such as turnover rate and absolute instead of relative abundance have to be analyzed. We applied a proteomics strategy to analyze protein degradation and abundance in Saccharomyces cerevisiae. We used steady-state chemostat cultures to ascertain well-defined growth conditions and nitrogen limited media, which allowed us to rapidly switch from (14)N to (15)N-isotope containing media and to monitor the decay of the (14)N mono-isotope signals in time. We acquired both protein abundance information and degradation rates of 641 proteins. Half-lives of individual proteins were very diverse under nitrogen-limited steady-state conditions, ranging from less than 30 min to over 20 h. Proteins that act as single physical complexes do not always show alike half-lives. For example the chaperonin-containing TCP-1 complex showed similar intermediate half-lives ranging from 7 to 20 h. In contrast, the ribosome exhibited a wide diversity of half-lives ranging from 2.5 to over 20 h, although their cellular abundances were rather similar. The stabilities of proteins involved in the central sugar metabolism were found to be intermediary, except for the glycolytic enzymes Hxk1p and Fba1p and the TCA-cycle proteins Lsc2p and Kgd1p, which showed half-lives of over 20 h. These data stress the need for inclusion of quantitative data of protein turn-over rates in yeast systems biology.  相似文献   

3.
4.
Quantitative comparison of protein expression levels in 2D gels is complicated by the variables associated with protein separation and mass spectrometric responses. Metabolic labeling allows cells from different experiments to be mixed prior to analysis. This approach has been reported for prokaryotic cells. Here, we demonstrate that metabolic labeling can also be successfully applied to the eukaryote Saccharormyces cerevisiae. Yeast leucine auxotrophs grown on synthetic complete media containing natural abundance Leu or D10-Leu were mixed prior to 2D gel separation and MALDI analysis of the digested proteins. D10-Leu labeling provided an effective internal calibrant for peptide MS analysis, and the number of Leu residues yielded an additional parameter for peptide identification at low mass resolution (1000). Metabolic incorporation of D10-Leu into yeast proteins was found to be quantitative since the intensities of the peptide peaks corresponded to those expected on the basis of the percent label in the media. Thus, D10-Leu labeling should provide reliable data for comparing proteomes both quantitatively and qualitatively from wild-type and nonessential-gene-null-mutant strains of S. cerevisiae. Given the central role played by yeast in our understanding of eukaryotic gene and protein expression, it is anticipated that the quantitative expressional proteomic method outlined here will have widespread applications.  相似文献   

5.
The content of protein carbonyls and thiobarbituric acid reactive substances (TBARS) in the wild and catalase-deficient strains of the yeast Saccharomyces cerevisiae grown in glucose and ethanol media are compared. The deficient strain cells reproduced 10.6-fold slower in ethanol-containing medium. Activity of glucose-6-phosphate dehydrogenase in YWT1 cells was 1.7-fold lower when yeast are grown in ethanol, and content of protein carbonyls was 4.7-fold higher, than when they are grown in the medium with glucose. At the same time, reproduction of the wild type cells in ethanol was 2.7-fold slower and carbonyl groups of protein content was 2-fold lower, than under cultivation in glucose. TBARS content in both strains was similar when they were grown in ethanol and in glucose. It has been supposed that catalases play a certain role in the protection of S. cerevisiae proteins against oxidative modification when they are grown on the media with glucose and ethanol.  相似文献   

6.
Nowadays, proteomics is recognized as one of the fastest growing tools in many areas of research. This is especially true for the study of Saccharomyces cerevisiae, as it is considered to be a model organism for eukaryotic cells. Proteomic analysis provides an insight into global protein expressions from identification to quantitation, from localization to function, and from individual to network systems. Moreover, many methods for identification and quantitation of proteins based on tandem mass spectrometry workflows have recently been developed and widely applied in S. cerevisiae. The current methods and issues in the proteomic analysis of S. cerevisiae are reviewed here.  相似文献   

7.
8.
Quantitative protein expression profiling is a crucial part of proteomics and requires methods that are able to efficiently provide accurate and reproducible differential expression values for proteins in two or more biological samples. In this report we evaluate in a direct comparative assessment two state-of-the-art quantitative proteomic approaches, namely difference in gel electrophoresis (DiGE) and metabolic stable isotope labeling. Therefore, Saccharomyces cerevisiae was grown under well defined experimental conditions in chemostats under two single nutrient-limited growth conditions using (14)N- or (15)N-labeled ammonium sulfate as the single nitrogen source. Following lysis and protein extraction from the two yeast samples, the proteins were fluorescently labeled using different fluorescent CyDyes. Subsequently, the yeast samples were mixed, and the proteins were separated by two-dimensional gel electrophoresis. Following in-gel digestion, the resulting peptides were analyzed by mass spectrometry using a MALDI-TOF mass spectrometer. Relative ratios in protein expression between these two yeast samples were determined using both DiGE and metabolic stable isotope labeling. Focusing on a small, albeit representative, set of proteins covering the whole gel range, including some protein isoforms and ranging from low to high abundance, we observe that the correlation between these two methods of quantification is good with the differential ratios determined following the equation R(Met.Lab.) = 0.98R(DiGE) with r(2) = 0.89. Although the correlation between DiGE and metabolic stable isotope labeling is exceptionally good, we do observe and discuss (dis)advantages of both methods as well as in relation to other (quantitative) approaches.  相似文献   

9.
A method for quantitative protein profiling has been developed utilising multidimensional liquid phase protein separations in conjunction with stable isotope labelling. This approach combines the advantages of high throughput, automated, reproducible protein separations with accurate protein quantitation performed in the mass spectrometer. Escherichia coli cells were grown in the presence and absence of the DNA methylation inhibitor 5-Azacytidine on 14N and 15N enriched media. Protein separations were performed using ion exchange chromatography in the first dimension and RP capillary chromatography in the second dimension. UV absorbance measurements were used for the initial semiquantitative identification of differentially expressed proteins. Selected peaks from the mixed 15N/14N lysates were used for the accurate quantitation performed in the mass spectrometer using the ratios of the stable isotopes. Using this approach, a number of differentially expressed proteins have been identified. Moreover, this approach overcomes a number of caveats associated with multidimensional liquid phase protein separations, including the presence of multiple proteins present in a single chromatographic peak.  相似文献   

10.
Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the beta-oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.  相似文献   

11.
The wild-type yeast Saccharomyces cerevisiae (S. cerevisiae) is able to export less than 1 percent of the protein to be secreted. The reasons for retention of most of the secretory proteins on the cell surface of S. cerevisiae are unknown. Recently, temperature-sensitive (ts) mutants of S. cerevisiae showing an oversecretion phenotype were isolated. In order to study the influence of the mitochondrial genome status on protein export in yeast cells, we have isolated several types of respiratory impaired mitochondrial mutants of either the parental S. cerevisiae strain or their derivative ts protein-overexporting mutants. In this paper we demonstrate by quantitative analyses of exported proteins and by SDS-PAGE analysis that protein overexport in ts mutants requires mitochondrial genome integrity and function.  相似文献   

12.
13.
Quantitative protein profiling is an essential part of proteomics and requires new technologies that accurately, reproducibly, and comprehensively identify and quantify the proteins contained in biological samples. We describe a new strategy for quantitative protein profiling that is based on the separation of proteins labeled with isotope-coded affinity tag reagents by two-dimensional gel electrophoresis and their identification and quantification by mass spectrometry. The method is based on the observation that proteins labeled with isotopically different isotope-coded affinity tag reagents precisely co-migrate during two-dimensional gel electrophoresis and that therefore two or more isotopically encoded samples can be separated concurrently in the same gel. By analyzing changes in the proteome of yeast (Saccharomyces cerevisiae) induced by a metabolic shift we show that this simple method accurately quantifies changes in protein abundance even in cases in which multiple proteins migrate to the same gel coordinates. The method is particularly useful for the quantitative analysis and structural characterization of differentially processed or post-translationally modified forms of a protein and is therefore expected to find wide application in proteomics research.  相似文献   

14.
Cao S  Xu W  Zhang N  Wang Y  Luo Y  He X  Huang K 《PloS one》2012,7(3):e32943
Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.  相似文献   

15.
16.
Shewanella decolorationis S12 is capable of carrying out anaerobic respiration using azo dyes and Fe (III) citrate as electron acceptors. In the present study, proteomic techniques including two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry were used to analyze the similarity and the dissimilarity of the membrane proteins isolated from strain S12 cells grown in amaranth or Fe (III) citrate with defined inorganic salt medium. The cells of strain S12 grown under a saturated dissolved oxygen condition served as controls. This is the first work that made the comparative analysis of cell membranous proteomics of strain S12 grown with azo compound or Fe (III) citrate as a sole terminal electron acceptor. The results showed that most of the membrane proteins of strain S12 under azo respiration are similar to those under Fe (III) respiration, but dissimilar from those of oxygen-grown cells. FdnH and FrdB were expressed specifically in azo respiration. NqrA-2, DctP, and hypothetical protein SO_4719 showed relative overexpression in azo respiration compared with Fe (III) respiration. OmpA family protein SO_3545 was detected to be specific to Fe (III) respiration. Furthermore, ArgF, SdhA, and HoxK were expressed markedly in both amaranth- and Fe (III) citrate-grown cultures compared with oxygen-grown cultures.  相似文献   

17.
Drosophila melanogaster is a common animal model for genetics studies, and quantitative proteomics studies of the fly are emerging. Here, we present in detail the development of a procedure to incorporate stable isotope-labeled amino acids into the fly proteome. In the method of stable isotope labeling with amino acids in Drosophila melanogaster (SILAC fly), flies were fed with SILAC-labeled yeast grown with modified media, enabling near complete labeling in a single generation. Biological variation in the proteome among individual flies was evaluated in a series of null experiments. We further applied the SILAC fly method to profile proteins from a model of fragile X syndrome, the most common cause of inherited mental retardation in human. The analysis identified a number of altered proteins in the disease model, including actin-binding protein profilin and microtubulin-associated protein futsch. The change of both proteins was validated by immunoblotting analysis. Moreover, we extended the SILAC fly strategy to study the dynamics of protein ubiquitination during the fly life span (from day 1 to day 30), by measuring the level of ubiquitin along with two major polyubiquitin chains (K48 and K63 linkages). The results show that the abundance of protein ubiquitination and the two major linkages do not change significantly within the measured age range. Together, the data demonstrate the application of the SILAC principle in D. melanogaster, facilitating the integration of powerful fly genomics with emerging proteomics.  相似文献   

18.
19.
The yeast Saccharomyces cerevisiae has been modified successfully for production of numerous metabolites and therapeutic proteins through metabolic engineering, but has not been utilized to date for the production of lipid-derived compounds. We developed a lipid metabolic engineering strategy in S. cerevisiae based upon culturing techniques that are typically employed for studies of peroxisomal biogenesis; cells were grown in media containing fatty acids as a sole carbon source, which promotes peroxisomal proliferation and induction of enzymes associated with fatty acid beta-oxidation. Our results indicate that growth of yeast on fatty acids such as oleate results in extensive uptake of these fatty acids from the media and a subsequent increase in total cellular lipid content from 2% to 15% dry cell weight. We also show that co-expression of plant fatty acid desaturases 2 and 3 ( FAD2 and FAD3), using a fatty acid-inducible peroxisomal gene promoter, coupled the processes of fatty acid uptake with the induction of a new metabolic pathway leading from oleic acid (18:1) to linolenic acid (18:3). Finally, we show that cultivation of yeast cells in the presence of triacylglycerols and exogenously supplied lipase promotes extensive incorporation of triglyceride fatty acids into yeast cells. Collectively, these results provide a framework for bioconversion of low-cost oils into value-added lipid products.  相似文献   

20.
We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed-phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification state. A total of 715 intact proteins were detected, and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post-translational modifications were assigned for approximately 10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction. Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C-, 15N-depleted media under aerobic and sub-oxic conditions. The strategy can be readily applied for measuring differential protein abundances and provides a platform for high-throughput selection of biologically relevant targets for further characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号