首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
T‐cell receptors (TCR) recognize their antigen ligand at the interface between T cells and antigen‐presenting cells, known as the immunological synapse (IS). The IS provides a means of sustaining the TCR signal which requires the continual supply of new TCRs. These are endocytosed and redirected from distal membrane locations to the IS. In our search for novel cytoplasmic effectors, we have identified β‐arrestin‐1 as a ligand of non‐phosphorylated resting TCRs. Using dominant‐negative and knockdown approaches we demonstrate that β‐arrestin‐1 is required for the internalization and downregulation of non‐engaged bystander TCRs. Furthermore, TCR triggering provokes the β‐arrestin‐1‐mediated downregulation of the G‐protein coupled chemokine receptor CXCR4, but not of other control receptors. We demonstrate that β‐arrestin‐1 recruitment to the TCR, and bystander TCR and CXCR4 downregulation, are mechanistically mediated by the TCR‐triggered PKC‐mediated phosphorylation of β‐arrestin‐1 at Ser163. This mechanism allows the first triggered TCRs to deliver a stop migration signal, and to promote the internalization of distal TCRs and CXCR4 and their translocation to the IS. This receptor crosstalk mechanism is critical to sustain the TCR signal.  相似文献   

2.
3.
We report crystal structures of a negatively selected T cell receptor (TCR) that recognizes two I-Au-restricted myelin basic protein peptides and one of its peptide/major histocompatibility complex (pMHC) ligands. Unusual complementarity-determining region (CDR) structural features revealed by our analyses identify a previously unrecognized mechanism by which the highly variable CDR3 regions define ligand specificity. In addition to the pMHC contact residues contributed by CDR3, the CDR3 residues buried deep within the Vα/Vβ interface exert indirect effects on recognition by influencing the Vα/Vβ interdomain angle. This phenomenon represents an additional mechanism for increasing the potential diversity of the TCR repertoire. Both the direct and indirect effects exerted by CDR residues can impact global TCR/MHC docking. Analysis of the available TCR structures in light of these results highlights the significance of the Vα/Vβ interdomain angle in determining specificity and indicates that TCR/pMHC interface features do not distinguish autoimmune from non-autoimmune class II-restricted TCRs.  相似文献   

4.
Whether a developing thymocyte becomes positively or negatively selected is thought to be determined by the affinity/avidity of its TCR for MHC/peptide ligands expressed in the thymus. Presumably, differences in affinity translate into differences in the potency of the ensuing TCR-mediated signals, and these differences in signal strength determine the outcome of thymocyte selection. However, there is little direct evidence establishing a relationship between TCR-ligand affinity and signal strength during positive and negative selection. The TCR complex contains multiple signaling motifs, known as immunoreceptor tyrosine-based activation motifs (ITAMs) that are required for T cell activation. To examine the effects of TCR signal strength on selection, the signaling potential of the TCR was modified by substituting transgenic TCR zeta-chains containing either three, one, or zero ITAMs for endogenous (3-ITAM) zeta-chain. These zeta-chain variants were then bred into different alphabetaTCR transgenic backgrounds. We report that reductions in TCR signaling potential have distinct effects on the selection of thymocytes expressing different TCRs, and that the requirement for zeta-chain ITAMs critically depends upon the specificity and apparently, affinity, of the TCR for its selecting ligand(s).  相似文献   

5.
Here we show by computer modeling that kinetics and outcome of signal transduction in case of hetero-oligomerizing receptors of a promiscuous ligand largely depend on the relative amounts of its receptors. Promiscuous ligands can trigger the formation of nonproductive receptor complexes, which slows down the formation of active receptor complexes and thus can block signal transduction. Our model predicts that increasing the receptor specificity of the ligand without changing its binding parameters should result in faster receptor activation and enhanced signaling. We experimentally validated this hypothesis using the cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its four membrane-bound receptors as an example. Bypassing ligand-induced receptor hetero-oligomerization by receptor-selective TRAIL variants enhanced the kinetics of receptor activation and augmented apoptosis. Our results suggest that control of signaling pathways by promiscuous ligands could result in apparent slow biological kinetics and blocking signal transmission. By modulating the relative amount of the different receptors for the ligand, signaling processes like apoptosis can be accelerated or decelerated and even inhibited. It also implies that more effective treatments using protein therapeutics could be achieved simply by altering specificity.  相似文献   

6.
Although ligation of the T-cell antigen receptor (TCR) is central to the responsiveness and antigen specificity of T-cells, it is insufficient to elicit a response. To determine whether the need for costimulation reflects inadequate strength of signal transduction through the TCR or an absolute block of signaling in the absence of a coligand, we studied T-cell activation under serum-free conditions eliminating costimulation by various extracellular matrix proteins which otherwise have an omnipresent and frequently overlooked effect. Engagement of the TCR leads to induction of Fas, but not to measurable IL-2 secretion or apoptosis. Those activation parameters are induced by costimulation through integrin alphaVbeta3. Furthermore, T-cell survival or elimination is determined by the type of ligand binding to this coreceptor with vitronectin, fibronectin, and fibrinogen efficiently inducing apoptosis and IL-2 production while osteopontin and entactin mediate IL-2 secretion comparably without causing programmed cell death. Consistent with the cytokine properties of these ligands, differential costimulation depends on their presentation in soluble rather than immobilized form. The determination of elimination versus survival of activated T-cells by coligation of beta3-integrins may have bearing on the fundamental postthymic mechanisms that shape the T-cell repertoire.  相似文献   

7.
While much is known about the signalling pathways within lymphocytes that are triggered during activation, much less is known about how the various cell surface molecules on T cells initiate these events. To address this, we have focused on the primary interaction that drives T-cell activation, namely the binding of a particular T-cell receptor (TCR) to peptide-MHC ligands, and find a close correlation between biological activity and off-rate; that is, the most stimulatory TCR ligands have the slowest dissociation rates. In general, TCRs from multiple histocompatibility complex (MHC) class-II-restricted T cells have half-lives of 1-11s at 25 degrees C, a much narrower range than found with antibodies and suggesting a strong selection for an optimum dissociation rate. TCR ligands with even faster dissociation rates tend to be antagonists. To observe the effects of these different ligands in their physiological setting, we made gene fusions of various molecules with green fluorescent protein (GFP), transfected them into the relevant lymphocytes, and observed their movements during T-cell recognition using multicolour video microscopy. We find that clustering of CD3zeta-GFP and CD4-GFP on the Tcell occurs concomitantly or slightly before the first rise in calcium by the T cell, and that various GFP-labelled molecules on the B-cell side cluster shortly thereafter (ICAM-1, class II MHC, CD48), apparently driven byT-cell molecules. Most of this movement towards the interface is mediated by signals through the co-stimulatory receptors, CD28 and LFA-1, and involves myosin motors and the cortical actin cytoskeleton. Thus, we have proposed that the principal mechanism by which co-stimulation enhances T-cell responsiveness is by increasing the local density of T-cell activation molecules, their ligands and their attendant signalling apparatus. In collaboration with Michael Dustin and colleagues, we have also found that the formation and stability of the TCR-peptide-MHC cluster at the centre of the interaction cap between T and B cells is highly dependent on the dissociation rate of the TCR and its ligand. Thus, we are able to link this kinetic parameter to the formation of a cell surface structure that is linked to and probably causal with respect to T-cell activation.  相似文献   

8.
While in many cases the half-life of T cell receptor (TCR) binding to a particular ligand is a good predictor of activation potential, numerous exceptions suggest that other physical parameter(s) must also play a role. Accordingly, we analyzed the thermodynamics of TCR binding to a series of peptide-MHC ligands, three of which are more stimulatory than their stability of binding would predict. Strikingly, we find that during TCR binding these outliers show anomalously large changes in heat capacity, an indicator of conformational change or flexibility in a binding interaction. By combining the values for heat capacity (DeltaCp) and the half-life of TCR binding (t(1/2)), we find that we can accurately predict the degree of T cell stimulation. Structural analysis shows significant changes in the central TCR contact residue of the peptide-MHC, indicating that structural rearrangements within the TCR-peptide-MHC interface can contribute to T cell activation.  相似文献   

9.
TCR activation of naive T cells in the presence of IL-12 drives polarization toward a Th1 phenotype and synthesis of P- and E-selectin ligands. Fucosyltransferase VII (Fuc-T VII) and core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT) are critical for biosynthesis of selectin ligands. P-selectin glycoprotein ligand-1 is the best characterized ligand for P-selectin and also binds E-selectin. The contributions of TCR and cytokine signaling pathways to up-regulate Fuc-T VII and C2GnT during biosynthesis of E- and P-selectin ligands, such as P-selectin glycoprotein ligand 1, are unknown. IL-12 signals via the STAT4 pathway. Here, naive DO11.10 TCR transgenic and STAT4(-/-) TCR transgenic CD4(+) T cells were stimulated with Ag and IL-12 (Th1 condition), IL-4 (Th2), or neutralizing anti-IL-4 mAb only (Th0). The levels of Fuc-T VII and C2GnT mRNA in these cells were compared with their adhesive interactions with P- and E-selectin in vitro under flow. The data show IL-12/STAT4 signaling is necessary for induction of C2GnT, but not Fuc-TVII mRNA, and that STAT4(-/-) Th1 cells do not traffic normally to sites of inflammation in vivo, do not interact with P-selectin, and exhibit a partial reduction of E-selectin interactions under shear stress in vitro. Ag-specific TCR activation in CD4(+) T cells was sufficient to trigger induction of Fuc-TVII, but not C2GnT, mRNA and expression of E-selectin, but not P-selectin, ligands. Thus, Fuc-T VII and C2GnT are regulated by different signals during Th cell differentiation, and both cytokine and TCR signals are necessary for the expression of E- and P-selectin ligands.  相似文献   

10.
Positive and negative selection of thymocytes is determined by the specificity of the TCR and signaling through its associated molecules. We have studied selection of thymocytes bearing a MHC class II-restricted TCR using fetal thymic organ culture. This system allows the addition of peptides to the already diverse panoply of endogenous peptide ligands and is useful for analyzing ligand-specific negative selection of CD4 single positive (CD4SP) thymocytes. The data reveal that the ability of a given ligand to mediate negative selection is related to its dissociation rate from the TCR. We find that negative selection is very sensitive, and only the weakest ligand that we can identify fails to induce negative selection. None of the numerous peptides tested were able to induce an increase in CD4SP thymocytes. In addition, the ligands that induce negative selection of CD4SP thymocytes also cause an increase in numbers of CD8SP thymocytes bearing high levels of the class II-restricted TCR. Although these cells have a cell surface phenotype consistent with positive selection, they most likely represent cells in the process of negative selection. Further analysis reveals that these cells are not induced by these ligands in intact adult animals and that their induction is probably only revealed in the organ culture system.  相似文献   

11.
The interaction of T0lymphocytes with antigen-presenting cells displaying a small number of specific peptide/major histocompatibility complexes results in the downregulation of a large number of T-cell receptors (TCR), suggesting serial TCR triggering. However, the details of TCR downregulation are controversial. In particular, the level of comodulation of nonengaged TCR reported by different authors ranges from essentially none to considerable levels. Here, we address this controversy using complementary experimental and mathematical techniques. We find that TCR downregulation is very rapid during the first 2–4 min after T-cell antigen-presenting cells contact formation. After this phase, TCR downregulation proceeds at a relatively slow rate. Statistical and computational analyses show that this pronounced change in downregulation kinetics is compatible with the notion of initial serial triggering of clustered TCR followed by serial triggering of individual TCR. We further propose a compatible mechanism for concurrent triggering of multiple TCR by a single peptide/major histocompatibility complex. We provide a unified picture of productive TCR engagement and downregulation in which TCR triggering characteristics evolve from an initial cooperative phase to a sustained phase of signal accumulation.  相似文献   

12.
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.  相似文献   

13.
While the effects of TCR affinity and TGFβ on CD8+ T-cell function have been studied individually, the manner in which TCR affinity dictates susceptibility to TGFβ-mediated suppression remains unknown. To address this issue, we utilized OVA altered peptide ligands (APLs) of different affinities in the OT-I model. We demonstrate that while decreased TCR ligand affinity initially results in weakened responses, such interactions prime the resultant effector cells to respond more strongly to cognate antigen upon secondary exposure. Despite this, responses by CD8+ T cells primed with lower-affinity TCR ligands are more effectively regulated by TGFβ. Susceptibility to TGFβ-mediated suppression is associated with downregulation of RGS3, a recently recognized negative regulator of TGFβ signaling, but not expression of TGFβ receptors I/II. These results suggest a novel tolerance mechanism whereby CD8+ T cells are discriminately regulated by TGFβ according to the affinity of the ligand on which they were initially primed. In addition, because of the major role played by TGFβ in tumor-induced immune suppression, these results identify the affinity of the priming ligand as a primary concern in CD8+ T-cell-mediated cancer immunotherapeutic strategies.  相似文献   

14.
Antigen recognition by T cells relies on the interaction between T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) at the interface between the T cell and the antigen presenting cell (APC). The pMHC-TCR interaction is two-dimensional (2D), in that both the ligand and receptor are membrane-anchored and their movement is limited to 2D diffusion. The 2D nature of the interaction is critical for the ability of pMHC ligands to trigger TCR. The exact properties of the 2D pMHC-TCR interaction that enable TCR triggering, however, are not fully understood. Here, we altered the 2D pMHC-TCR interaction by tethering pMHC ligands to a rigid plastic surface with flexible poly(ethylene glycol) (PEG) polymers of different lengths, thereby gradually increasing the ligands’ range of motion in the third dimension. We found that pMHC ligands tethered by PEG linkers with long contour length were capable of activating T cells. Shorter PEG linkers, however, triggered TCR more efficiently. Molecular dynamics simulation suggested that shorter PEGs exhibit faster TCR binding on-rates and off-rates. Our findings indicate that TCR signaling can be triggered by surface-tethered pMHC ligands within a defined 3D range of motion, and that fast binding rates lead to higher TCR triggering efficiency. These observations are consistent with a model of TCR triggering that incorporates the dynamic interaction between T cell and antigen-presenting cell.  相似文献   

15.
Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell‐surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short‐term receptor activation and signal initiation but decrease long‐term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand–receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
At the interface between T cell and antigen-presenting cell (APC), peptide antigen presented by MHC (pMHC) binds to the T cell receptor (TCR) and initiates signaling. The mechanism of TCR signal initiation, or triggering, remains unclear. An interesting aspect of this puzzle is that although soluble agonist pMHCs cannot trigger TCR even at high concentrations, the same ligands trigger TCR very efficiently on the surface of APCs. Here, using lipid bilayers or plastic-based artificial APCs with defined components, we identify the critical APC-associated factors that confer agonist pMHCs with such potency. We found that CD4+ T cells are triggered by very low numbers of monomeric agonist pMHCs anchored on fluid lipid bilayers or fixed plastic surfaces, in the absence of any other APC surface molecules. Importantly, on bilayers, plastic surfaces, or real APCs, endogenous pMHCs did not enhance TCR triggering. TCR triggering, however, critically depended upon the adhesiveness of the surface and an intact T cell actin cytoskeleton. Based on these observations, we propose the receptor deformation model of TCR triggering to explain the remarkable sensitivity and specificity of TCR triggering.  相似文献   

17.
The maintenance of tolerance is likely to rely on the ability of a T cell to polarize surface molecules providing "help" to only specific APCs. The formation of a mature immunological synapse leads to concentration of the TCR at the APC interface. In this study, we show that the CD40-CD154 receptor-ligand pair is also highly concentrated into a central region of the synapse on mouse lymphocytes only after the formation of the TCR/CD3 c-SMAC. Concentration of this ligand was strictly dependent on TCR recognition, the binding of ICAM-1 to T cell integrins and the presence of an intact cytoskeleton in the T cells. This may provide a novel explanation for the specificity of T cell help directing the help signal to the site of Ag receptor signal. It may also serve as a site for these molecular aggregates to coassociate and/or internalize alongside other signaling receptors.  相似文献   

18.
Naive CD4(+) T cells differentiate into two types of helper T cells showing an interferon-gamma-predominant (Th1) or an interleukin-4-predominant (Th2) cytokine secretion profile after repeated antigenic stimulation. Their differentiation can be influenced by slight differences in the interaction between the T cell receptor (TCR) and its ligand at the time of primary activation. However, the primary response of freshly isolated naive CD4(+) T cells to altered TCR ligands is still unclear. Here, we investigated the primary response of splenic naive CD4(+) T cells derived from transgenic mice expressing TCR specific for residues 323-339 of ovalbumin (OVA323-339) bound to I-A(d) molecules. Naive CD4(+) T cells secreted either Th1- or Th2-type cytokines immediately after stimulation with OVA323-339 or its single amino acid-substituted analogs. Helper activity for antibody secretion by co-cultured resting B cells was also found in the primary response, accompanied by either low-level Th2-type cytokine secretion or no apparent cytokine secretion. Our results clearly indicate that dichotomy of the Th1/Th2 cytokine secretion profile can be elicited upon primary activation of naive CD4(+) T cells. We also demonstrate that the helper activity of naive CD4(+) T cells for antibody production does not correspond to the amounts of the relevant cytokines secreted.  相似文献   

19.
Efficient T cell activation depends on the engagement of both TCR and CD28, although the molecular mechanisms that control this signal integration are not fully understood. Using fluorescence resonance energy transfer, we show that T cell activation can drive a reorientation of the cytosolic tails of the CD28 dimer. However, this is not mediated through CD28 ligand binding. Rather, TCR signaling itself mediates this conformation change in CD28. We also show that TCR signaling can induce CD28-ligand interactions. Although the CD28 dimer appears to bind ligand monovalently in solution, we show that both ligand binding sites are required to efficiently recruit CD28 to the immunological synapse. These results suggest, that analogous to the cross-talk from TCR that regulates integrin activation, TCR-initiated inside-out signaling may induce a conformational change to the extracellular domains of CD28, enabling ligand binding and initiating CD28 signaling.  相似文献   

20.
TLR ligands are among the key stimuli driving the optimal dendritic cell (DC) maturation critical for strong and efficacious T cell priming. In this study, we show that part of this effect occurs via increased TCR triggering. Pretreatment of DCs with TLR ligands resulted in the triggering of many more TCRs in responding CD8(+) T cells. Importantly, even when DCs expressed the same amount of cognate peptide-MHC (pMHC) molecules, TLR ligand treatment resulted in down-regulation of larger numbers of TCR molecules. This was independent of the up-regulation of costimulatory, adhesion or cytokine molecules or the amount of noncognate pMHCs. Rather, DCs pretreated with TLR ligands exhibited increased stability of cognate pMHCs, enabling extended TCR triggering. These findings are of potential importance to T cell vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号