首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Over the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.  相似文献   

2.
Extracellular human immunodeficiency virus-1 (HIV-1) Tat protein and Tat-derived peptides are biologically active but mechanisms of Tat processing are not known. Within the highly conserved basic region of HIV-1 Tat protein (amino acids, a.a. 48-56), we identified two putative furin cleavage sites and showed that Tat protein was cleaved in vitro at the second site, RQRR\ (a.a. 53-56\). This in vitro cleavage was blocked by a monoclonal antibody that binds near the cleavage site or by the furin inhibitor alpha-1 PDX. Monocytoid cells rich in furin also degraded Tat and this process was slowed by the furin inhibitor or the specific monoclonal antibody. Furin processing did not affect the rates for Tat uptake and nuclear accumulation in HeLa or Jurkat cells, but the transactivation activity was greatly reduced. Furin processing is a likely mechanism for inactivating extracellular HIV-1 Tat protein.  相似文献   

3.
4.
5.
The pathological correlates of dementia due to human immunodeficiency virus (HIV) infection are glial cell activation and cytokine dysregulation. These findings occur in the setting of small numbers of productively infected cells within the brain. We determined whether exposure of susceptible cells to Tat protein of HIV could result in the production of select proinflammatory cytokines. In a dose-responsive manner, Tat induced interleukin (IL)-1beta production in monocytic cells, while astrocytic cells showed an increase in mRNA for IL-1beta, but had a translation block for IL-1beta protein production. Conversely, IL-6 protein and mRNA productions were strongly induced in astrocytic cells and minimally in monocytic cells. IL-1beta and IL-6 production were independent of tumor necrosis factor-alpha production. An exposure to Tat for a few minutes was sufficient for sustained releases of cytokines for several hours. This prolonged cytokine production is likely maintained by a positive feed back loop of Tat-induced nuclear factor kappaB activation and cytokine production that is independent of extracellular calcium. Thus a transient exposure may be sufficient to initiate a cascade of events resulting in cerebral dysfunction and a "hit and run" approach may be in effect. Hence cross-sectional measurement of viral load in the brain may not be a useful indicator of the role of viral products in the neuropathogenesis of HIV dementia.  相似文献   

6.
7.
HIV-1 Tat protein trans-activates transcription in vitro   总被引:55,自引:0,他引:55  
  相似文献   

8.
BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.  相似文献   

9.
High mobility group box protein 1 (HMGB1) is an abundant component of mammalian cells that can be released into extracellular milieu actively or by cells that undergo necrosis. Exposure of inflammatory and endothelial cells to HMGB1 leads to the release of cytokines, including TNF-alpha and IL-6. To evaluate the impact of exogenous HMGB1 on viral replication in HIV-1 infected cells, we studied models of latent and acute infection. Extracellular HMGB1 dose dependently increased HIV-1 replication in the monocytic cells, U1, which is an established model for studying latent HIV-1 infection. Dexamethasone, a known inhibitor of NF-kappaB signaling in U1 cells, inhibited HMGB1-induced stimulation of the viral production. Addition of HMGB1 to primary monocytic cells with active HIV-1 infection elicited the opposite effect, due to suppression of the viral replication. The mechanism of this unexpected finding was explained by an HMGB1-mediated increased release of chemokines (RANTES, MIP-1alpha, and MIP-1beta) that are known to inhibit HIV-1 replication. The stimulatory effect of the HMGB1 was not present when latently infected T-cells (ACH-2) were used as target cells. Our data suggest that extracellular HMGB1 has a dichotomic effect on the HIV-1 infection in monocytes but not in lymphocytes. Both activation of latent HIV-1 infection and inhibition of active replication can thus be seen in vitro.  相似文献   

10.
11.
HIV-1 viral protein R (Vpr) is one of the human immunodeficiency virus type 1 encoded proteins that have important roles in viral pathogenesis. However, no clinical drug for AIDS therapy that targets Vpr has been developed. Here, we have established a screening system to isolate Vpr inhibitors using budding yeast cells. We purified a Vpr inhibitory compound from fungal metabolites and identified it as fumagillin, a chemical already known to be a potent inhibitor of angiogenesis. Fumagillin not only reversed the growth inhibitory activity of Vpr in yeast and human cells, but also inhibited Vpr-dependent viral gene expression upon the infection of human macrophages.  相似文献   

12.
We examined the early effects of infection by CCR5-using (R5 human immunodeficiency virus [HIV]) and CXCR4-using (X4 HIV) strains of HIV type 1 (HIV-1) on chemokine production by primary human monocyte-derived macrophages (MDM). While R5 HIV, but not X4 HIV, replicated in MDM, we found that the production of the C-X-C chemokine growth-regulated oncogene alpha (GRO-alpha) was markedly stimulated by X4 HIV and, to a much lesser extent, by R5 HIV. HIV-1 gp120 engagement of CXCR4 initiated the stimulation of GRO-alpha production, an effect blocked by antibodies to CXCR4. GRO-alpha then fed back and stimulated HIV-1 replication in both MDM and lymphocytes, and antibodies that neutralize GRO-alpha or CXCR2 (the receptor for GRO-alpha) markedly reduced viral replication in MDM and peripheral blood mononuclear cells. Therefore, activation of MDM by HIV-1 gp120 engagement of CXCR4 initiates an autocrine-paracrine loop that may be important in disease progression after the emergence of X4 HIV.  相似文献   

13.
14.
The human immunodeficiency virus (HIV) transactivating Tat protein is not only critical for viral replication but also affects the host immune system by inducing the production of cytokines such as IL-10. This anti-inflammatory cytokine is upregulated during the course of HIV infection, representing an important pathway by which HIV may induce immunodeficiency. Here, we show that, by acting at the membrane, Tat induces IL-10 expression in primary monocytes and promonocytic U937 cells by NF-kappaB-dependent pathways. The trans-dominant negative mutants of NF-kappaB-inducing kinase (NIK), IKKalpha and IKKbeta expressed in our transactivation model, in accordance with the nuclear binding of p65 and p52 NF-kappaB subunits to the IL-10 promoter, suggest the involvement of both classical and alternative NF-kappaB pathways. In inactivated cells, IKKalpha is localized predominantly in the cytoplasm. Interestingly, Tat stimulates IKKalpha translocation from the cytoplasm to the nucleus in monocytes. Chromatin immunoprecipitation (ChIP) assay experiments, after Tat treatment, revealed IKKalpha and CBP/p300 recruitment to the IL-10 promoter and histone H3 phosphorylation (Ser 10) and acetylation (Lys 14) in this region, presumably leading to chromatin remodeling. We demonstrate that, upstream of NF-kappaB, PKC, ERK1/2 and p38 MAP kinases are involved in Tat-induced IKKalpha nuclear translocation and histone H3 modifications on the IL-10 promoter in accordance with the role of these three kinases in IL-10 production. As a whole, the study demonstrates that Tat activates at least three signaling pathways concurrently, including the classical, alternative and IKKalpha pathways, to promote production of IL-10.  相似文献   

15.
Endocytosis and targeting of exogenous HIV-1 Tat protein.   总被引:31,自引:1,他引:31       下载免费PDF全文
The human immunodeficiency virus-1 (HIV-1) Tat protein has previously been shown to transactivate the HIV-1-LTR when added exogenously to HeLa, H9 lymphocytic and U937 promonocytic cells growing in culture. Here we show that Tat enters these cells by adsorptive endocytosis. Tat appears to bind non-specifically to the cell surface, with greater than 10(7) sites per cell. A specific receptor was not detected by protein crosslinking experiments, and uptake was not affected by treating cells with trypsin, heparinase or neuraminidase. Uptake and transactivation could be inhibited by incubation with heparin, dextran sulfate, an anti-Tat monoclonal antibody, or by incubation at 4 degrees C. In contrast, transactivation by Tat was markedly stimulated by the addition of basic peptides, such as Tat 38-58 or protamine. Fluorescence experiments with rhodamine-conjugated Tat show punctate staining on the cell surface and then localization to the cytoplasm and nucleus. The lack of a specific receptor makes it unclear whether Tat uptake is biologically important in HIV infection, however, the efficiency of uptake raises the possibility that Tat may be useful for delivery of protein molecules into cells.  相似文献   

16.
HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation   总被引:112,自引:0,他引:112  
M F Laspia  A P Rice  M B Mathews 《Cell》1989,59(2):283-292
  相似文献   

17.
BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) infects macrophages effectively, despite relatively low levels of cell surface-expressed CD4. Although HIV-1 infections are defined by viral tropisms according to chemokine receptor usage (R5 and X4), variations in infection are common within both R5- and X4-tropic viruses, indicating additional factors may contribute to viral tropism. METHODOLOGY AND PRINCIPAL FINDINGS: Using both solution and cell surface binding experiments, we showed that R5- and X4-tropic HIV-1 gp120 proteins recognized a family of I-type lectin receptors, the Sialic acid-binding immunoglobulin-like lectins (Siglec). The recognition was through envelope-associated sialic acids that promoted viral adhesion to macrophages. The sialic acid-mediated viral-host interaction facilitated both R5-tropic pseudovirus and HIV-1(BaL) infection of macrophages. The high affinity Siglec-1 contributed the most to HIV-1 infection and the variation in Siglec-1 expression on primary macrophages from different donors was associated statistically with sialic acid-facilitated viral infection. Furthermore, envelope-associated sialoglycan variations on various strains of R5-tropic viruses also affected infection. CONCLUSIONS AND SIGNIFICANCE OF THE FINDINGS: Our study showed that sialic acids on the viral envelope facilitated HIV-1 infection of macrophages through interacting with Siglec receptors, and the expression of Siglec-1 correlated with viral sialic acid-mediated host attachment. This glycan-mediated viral adhesion underscores the importance of viral sialic acids in HIV infection and pathogenesis, and suggests a novel class of antiviral compounds targeting Siglec receptors.  相似文献   

18.
19.
In the last few years, literature reports have unequivocally established that the 86-101 aminoacid Tat protein, essential for an efficient viral replication, can be actively secreted by infected cells. The contribution of extracellular Tat to the progression of viral infection is underlined by the ability of neutralizing anti Tat antibody to reduce the viral load in vitro and possibly also in vivo. Considering that at least some of the effect of Tat protein seem to be the consequence of an autocrine loop and that anti Tat antibody is an efficient inhibitor of viral replication, it is reasonable to suppose that extracellular Tat play a functional role in HIV-1 infection and that HIV antibody may interfere with a possible Tat driven pathogenesis. This review explores the meaning of anti Tat antibody in vitro and in vivo and its importance to shed more light on viral pathogenesis and the recent development of Tat containing vaccine.  相似文献   

20.
HIV-1 protein Tat is neurotoxic and increases macrophage and microglia production of TNF-alpha, a cytopathic cytokine linked to the neuropathogenesis of HIV dementia. Others have shown that intracellular calcium regulates TNF-alpha production in macrophages, and we have shown that Tat releases calcium from inositol 1,4, 5-trisphosphate (IP3) receptor-regulated stores in neurons and astrocytes. Accordingly, we tested the hypothesis that Tat-induced TNF-alpha production was dependent on the release of intracellular calcium from IP3-regulated calcium stores in primary macrophages. We found that Tat transiently and dose-dependently increased levels of intracellular calcium and that this increase was blocked by xestospongin C, pertussis toxin, and by phospholipase C and type 1 protein kinase C inhibitors but not by protein kinase A or phospholipase A2 inhibitors. Xestospongin C, BAPTA-AM, U73122, and bisindolylmalemide significantly inhibited Tat-induced TNF-alpha production. These results demonstrate that in macrophages, Tat-induced release of calcium from IP3-sensitive intracellular stores and activation of nonconventional PKC isoforms play an important role in Tat-induced TNF-alpha production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号