首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty hours following the subcutaneous administration of 5 mEq/kg doses of 6LiCl and 7LiCl to two groups of rats, the cerebral cortex molar ratio of 6Li+/7Li+ is 1.5. The effects of the lithium isotopes on cortex myo-inositol and myo-inositol-l-phosphate levels are the same as we have reported earlier: a Li+ concentration-dependent lowering of myo-inositol and increase in myo-inositol-1-phosphate. Thus 6LiCl, when administered at the same dose as 7LiCl, produces the larger effect on inositol metabolism. When the 6LiCl and 7LiCl doses were adjusted to 5 mEq/kg and 7 mEq/kg, respectively, the cortical lithium myo-inositol and myo-inositol-1-phosphate levels of each group of animals became approximately equal, suggesting that the isotope effect occurs at the level of tissue uptake, but not on inositol phosphate metabolism. The inhibition of myo-inositol-1-phosphatase by the two lithium isotopes in vitro showed no differential effect. The isotope effect on cerebral cortex uptake of lithium is in the same direction as that reported by others for erythrocytes and for the CSF/plasma ratio, but of larger magnitude.  相似文献   

2.
A single subcutaneous dose of 10 mEq/kg LiCl gives rise to an increase in the cerebral cortex level of myo-inositol-1-P (I1P) that closely follows cortical lithium levels and, at maximum, is 40-fold above the control value. Kidney and testis show smaller increases in I1P level following LiCl administration. The I1P level is still sixfold greater than that of untreated rat cortex 72 h later. In cortex, parallel increases also occur in myo-inositol-4-P (I4P) and myo-inositol 1,2-cyclic-P (cI1,2P), whereas myo-inositol-5-P (I5P) remains unchanged. The cortical increases in I1P and I4P levels are partially reversed by administering 150 mg/kg of atropine 22 h after the LiCl, treatment that does not affect cI1,2P. When doses of LiCl from 2 to 17 mEq/kg are given, the cerebral cortex levels of I1P and myo-inositol, measured 24 h later, are found to reach a plateau at about 9 mEq/kg of LiCl, whereas cortical lithium levels continued to increase with greater LiCl doses. Levels of all three of the brain phosphoinositides are unchanged by the 10 mEq/kg LiCl dose, as is the uptake of 32Pi into these lipids. Chronic dietary administration of LiCl for 22 days showed that the effects of lithium on I1P and myo-inositol levels persist for that period. Over the course of the chronic administration of the lithium, levels of I1P, myo-inositol, and of lithium in cortex remained significantly correlated. We believe that these increases in inositol phosphates result from endogenous phosphoinositide metabolism in cerebral cortex and that lithium is capable of modulating that metabolism by reducing cellular myo-inositol levels. The size of the effect is a function of both lithium dose and the degree of stimulation of receptor-linked phosphoinositide metabolism. This property of lithium may explain part of its ability to moderate the symptoms of mania. Our chronic study suggests that prolonged administration of LiCl does not result in compensatory changes in myo-inositol-1-P synthase or myo-inositol-1-phosphatase.  相似文献   

3.
利用糖原合成酶激酶3的抑制剂氯化锂作用于A549细胞,观察细胞形态与增殖的改变及其对Polo-like激酶1转录活性的影响.采用细胞计数检测细胞增殖,流式细胞术分析细胞周期变化;Western印迹检测磷酸化GSK3以及细胞周期相关蛋白p53、cyclin B1和Plk1的表达变化;RT-PCR检测Plk1 mRNA的表达;荧光素酶报告基因分析氯化锂对Plk1启动子活性的影响.结果显示,5 mmol/L氯化锂作用48 h后,A549细胞即发生明显的形态学改变,细胞增殖减慢并发生G2/M期阻滞;Plk1 mRNA和蛋白表达均升高,p53蛋白表达增强,而cyclin B1的蛋白表达无明显变化.氯化锂作用24 h后,可见pGL2-Plk1转染组中荧光素酶活性增高(与对照质粒相比,P<0.05),48 h后更明显.以上结果表明, 氯化锂减慢A549细胞增殖,导致G2/M期阻滞,并能增强Plk1的启动子活性,促进Plk1的表达.  相似文献   

4.
Three groups of female Sprague-Dawley rats (n = 4) were conditioned to drink water during a daily 2 hr session. The water was then changed to a solution of 1.0 mg/ml lithium chloride producing average doses between 62.9 and 72.1 mg/kg/day for Groups I and II. These rats were challenged with 4 mg/kg PCP i.p. before and during lithium treatment. Group I was tested for spontaneous locomotor activity in the open field apparatus. Lithium alone did not affect activity. After 1, 2, and 3 weeks of chronic lithium, PCP-induced activity increased 2.1, 1.7, and 2.8 fold, respectively, relative to PCP-induced activity during limited access to water only. Whole brain homogenates from Group II, after one week of chronic lithium, were used for receptor binding experiments using [3H] PCP; Group III served as water controls. The Kd (nM +/- S.E.M.) was not different in untreated (146.39 +/- 18.95) and lithium-treated (181.22 +/- 14.35) rats. The Bmax (pmole/mg protein +/- S.E.M.), however, was increased 48% (p less than 0.01) from 1.50 +/- 0.08 to 2.22 +/- 0.10 after lithium. These preliminary results suggest that chronic administration of lithium modifies the behavioral effects of PCP possibly via alterations at the receptor level.  相似文献   

5.
Eight men exercised at 66% of their maximal isometric force to fatigue after prior decrease in the glycogen store in one leg (low-glycogen, LG). The exercise was repeated with the contralateral leg (control) at the same relative intensity and for the same duration. Muscle (quadriceps femoris) glycogen content decreased in the LG leg from 199 +/- 17 (mean +/- S.E.M.) to 163 +/- 16 mmol of glucosyl units/kg dry wt. (P less than 0.05), and in the control leg from 311 +/- 23 to 270 +/- 18 mmol/kg (P less than 0.05). The decrease in glycogen corresponded to a similar accumulation of glycolytic intermediates. Muscle glucose increased in the LG leg during the contraction, from 1.8 +/- 0.1 to 4.3 +/- 0.6 mmol/kg dry wt. (P less than 0.01), whereas no significant increase occurred in the control leg (P greater than 0.05). It is concluded that during exercise glucose is formed from glycogen through the debranching enzyme when muscle glycogen is decreased to values below about 200 mmol/kg dry wt.  相似文献   

6.
We investigated the effect of lithium chloride administration (Sigma): 1 mmol/kg b.w. i.p./day for 35 days on the testes and sperm of viscacha (Lagostomus maximus maximus), a nocturnal rodent found only in the pampas of Argentina. The histological study showed that hypospermatogenesis and the sperm number per mL decreased markedly in comparison with the controls (treatment group: 315 x 10(6) +/- 77 x 10(6); control group: 693 x 10(6) +/- 39 x 10(6), Means +/- SEM, Student's t-test: p < 0.05). The sperm motility and viability were also affected. Under the same treatment, the testicular tissue and the sperm of rats were not damaged. Moreover, lithium induced these changes when the plasm levels were within the therapeutic range in humans. Our results provide evidence for the claim that viscacha testes and sperm react very sensitively to low doses of lithium, whereas these concentrations do not produce damage in rats.  相似文献   

7.
In a previous study (1) we demonstrated that lithium administration (1.0 mmol/kg b.wt., per day for 4 weeks) in intact vizcacha (Lagostomus maximus maximus) leads to significant histological alterations in the kidneys, ovarie and testicles, while these three tissues were not damaged in rats. Male vizcachas died within 4 days when administered LiCl 3 mmol/kg b.wt., while females were not affected. The lithium renal clearance presented no changes in either males or females. The 1.0 mmol/kg b.wt. dose was used in the experiments (2). In this study we examined the distribution of lithium in various tissues of male and female vizcacha (Lagostomus maximus maximus) administered LiCl by injection (1 mmol/kg b.wt.) for one day (Group I) and thirty days (Group II). Blood sample was obtained after 24 hours (Group I) and 30 days (Group II). The tissues investigated were: pituitary, hypothalamus, cerebral cortex, cerebellum, corpus callous, small and large intestine, kidney and suprarenal. The concentration of lithium in tissues and serum was determined by atomic absortion spectrometry (3,4). In Group I a significant lithium concentration increment (mumol/g of tissue) was observed in all the tissues of male vizcachas as compared to female vizcacha. A similar distribution was obtained in animals treated for 30 days. In the pituitary, however this difference between males and females was not significant. The male lithium serum levels were significantly higher than those of female animals. In conclusion, we suggest that the particular structure of the cell membrane (e.g., number and characteristic of sodium channels) of each tissue and/or the intracellular mechanisms of transport, elimination and metabolism might explain the unequal lithium distribution and the difference recovery from the damage produced. The results suggest that the vizcacha could be a useful model for the study of lithium toxicity.  相似文献   

8.
The present study, carried out in rats, is a contribution to explore physiological mechanisms underlying lithium toxicity. Male and female mature rats were divided into three groups and fed on commercial pellets: group (C) was control, group (Li1) was given 2000 mg lithium carbonate/kg of food, and group (Li2) was given 4000 mg lithium carbonate/kg of food. If we take into account the BW of the rats and the quantity of food they eat every day, we can estimate that the quantities of lithium carbonate ingested per day and kilogram of BW are, respectively, for the groups Li1 and Li2, of 212 mg (5,738 mmol Li) and 323 mg (8,742 mmol Li) for the males, and about 190 mg (5,142 mmol Li) and 289 mg (7,822 mmol Li) for the females. After 7, 14, 21 and 28 days, serum concentrations of lithium, creatinine, free triiodothyronine (FT3) and thyroxine (FT4), testosterone and estradiol were measured. Attention was also paid to growth rate and a histological examination of testes or vaginal mucosa was carried out. In treated rats, a dose-dependent loss of appetite and a decrease in growth rate were observed together with polydipsia, polyuria, and diarrhoea. Lithium serum concentrations were found to increase from 0.44 mM (day 7) to 1.34 mM (day 28) in Li1 rats and from 0.66 to 1.45 mM (day 14) in Li2 rats. Treatment was stopped at day 14 in Li2 rats because of a high mortality. The significant increase of creatinine that appeared, respectively, at day 7 and 14 in Li2 and Li1 rats shows that serum lithium concentrations ranging from 0.62 to 0.75 mM were able to induce renal insufficiency, secondarily leading to a time-dependent rise in lithium serum concentrations. A significant decrease of serum thyroxine (FT4) and triiodothyronine (FT3) levels was observed for lithium concentrations ranging from: 0.66 to 0.75 mmol l(-1) (Li2 rats) to 1.27 mmol l(-1) (Li1 rats). This effect was more pronounced for FT3, suggesting a defect of FT4/FT3 conversion. Under lithium treatment, the testosterone level decreased and spermatogenesis was stopped. By contrast, in treated female rats, estradiol level was found to be increased in a dose-dependent manner and animals were blocked in the diestrus phase at day 28. These results show that lithium can rapidly induce toxic effects in the rat at concentrations used for the treatment of bipolar disorders in human.  相似文献   

9.
We examined the hypothesis that increasing the rate of branched-chain amino acid (BCAA) oxidation, during conditions of low glycogen availability, reduces the level of muscle tricarboxylic acid cycle intermediates (TCAI) by placing a carbon "drain" on the cycle at the level of 2-oxoglutarate. Six men cycled at approximately 70% of maximal oxygen uptake for 15 min under two conditions: 1) low preexercise muscle glycogen (placebo) and 2) low glycogen combined with BCAA ingestion. We have previously shown that BCAA ingestion increased the activity of branched-chain oxoacid dehydrogenase, the rate-limiting enzyme for BCAA oxidation in muscle, compared with low glycogen alone [M. L. Jackman, M. J. Gibala, E. Hultman, and T. E. Graham. Am. J. Physiol. 272 (Endocrinol. Metab. 35): E233-E238, 1997]. Muscle glycogen concentration was 185 +/- 22 and 206 +/- 22 mmol/kg dry wt at rest for the placebo and BCAA-supplemented trials, respectively, and decreased to 109 +/- 18 and 96 +/- 10 mmol/kg dry wt after exercise. The net increase in the total concentration of six measured TCAI ( approximately 95% of TCAI pool) during exercise was not different between trials (3.97 +/- 0. 34 vs. 3.88 +/- 0.34 mmol/kg dry wt for the placebo and BCAA trials, respectively). Muscle 2-oxoglutarate concentration decreased from approximately 0.05 at rest to approximately 0.03 mmol/kg dry wt after exercise in both trials. The magnitude of TCAI pool expansion in both trials was similar to that seen previously in subjects who performed an identical exercise bout after a normal mixed diet [M. J. Gibala, M. A. Tarnopolsky, and T. E. Graham. Am. J. Physiol. 272 (Endocrinol. Metab. 35): E239-E244, 1997]. These data suggest that increasing the rate of BCAA oxidation has no measurable effect on muscle TCAI during exercise with low glycogen in humans. Moreover, it appears that low resting glycogen per se does not impair the increase in TCAI during moderate exercise.  相似文献   

10.
REPORTS of the behavioural effects of lithium salts on animals mainly seem to have dealt with depressant effects on spontaneous activities or with toxic symptoms (weight loss, polyuria, polydipsia, diarrhoea and so on). After prolonged lithium treatment, changes in brain 5-hydroxytryptamine (5HT) metabolism have been found to occur; 5HT turnover is decreased either in the whole brain1 or in specific areas such as brainstem and hypothalamus1, 2, where the levels are also decreased2. When levels of 5HT are reduced in the whole brain of rats either by lesions3 or by parachlorophenylalanine (PCPA)4, an inhibitor of 5HT synthesis, motor responsiveness of rats to electrical stimulation of the feet has been found to increase. We have observed that rats treated with lithium for a few days struggle more than controls when the skin is punctured in the course of injections and after 2 weeks of treatment with lithium chloride (LiCl), foot shock “jump response” thresholds are reduced by about 10 and 25% with doses of 1 and 2 mequiv./kg respectively. With larger doses, sensitivity to foot shock is not increased further, but may even decline as toxic effects appear; after 2 weeks of administration of 3 mequiv/kg LiCl, toxic effects appeared in nearly all our rats and about 10% of animals died. Sheard5 has found that treatment for 5 days with a high dose of LiCl (5 mequiv/kg) had no effect on motor responsiveness to foot shock, although shock-induced aggressive behaviour decreased; no toxic effects were reported.  相似文献   

11.
It has been suggested that insulin-induced suppression of endogenous glucose production (EGP) may be counteracted independently of increased epinephrine (Epi) or glucagon during moderate hypoglycemia. We examined EGP in nondiabetic (n = 12) and type 1 diabetic (DM1, n = 8) subjects while lowering plasma glucose (PG) from clamped euglycemia (5.6 mmol/l) to values just above the threshold for Epi and glucagon secretion (3.9 mmol/l). Individualized doses of insulin were infused to maintain euglycemia during pancreatic clamps by use of somatostatin (250 microg/h), glucagon (1.0 ng. kg(-1). min(-1)), and growth hormone (GH) (3.0 ng. kg(-1). min(-1)) infusions without need for exogenous glucose. Then, to achieve physiological hyperinsulinemia (HIns), insulin infusions were fixed at 20% above the rate previously determined for each subject. In nondiabetic subjects, PG was reduced from 5.4 +/- 0.1 mmol/l to 3.9 +/- 0.1 mmol/l in the experimental protocol, whereas it was held constant (5. 3 +/- 0.2 mmol/l and 5.5 mmol/l) in control studies. In the latter, EGP (estimated by [3-(3)H]glucose) fell to values 40% of basal (P < 0.01). In contrast, in the experimental protocol, at comparable HIns but with PG at 3.9 +/- 0.1 mmol/l, EGP was activated to values about twofold higher than in the euglycemic control (P < 0.01). In DM1 subjects, EGP failed to increase in the face of HIns and PG = 3.9 +/- 0.1 mmol/l. The decrease from basal EGP in DM1 subjects (4.4 +/- 1.0 micromol. kg(-1). min(-1)) was nearly twofold that in nondiabetics (2.5 +/- 0.8 micromol. kg(-1). min(-1), P < 0.02). When PG was lowered further to frank hypoglycemia ( approximately 3.1 mmol/l), the failure of EGP activation in DM1 subjects was even more profound but associated with a 50% lower plasma Epi response (P < 0. 02) compared with nondiabetics. We conclude that glucagon- or epinephrine-independent activation of EGP may accompany other counterregulatory mechanisms during mild hypoglycemia in humans and is impaired or absent in DM1.  相似文献   

12.
The effect of glycogen content on the activation of glycogen phosphorylase during adrenaline stimulation was investigated in soleus muscles from Wistar rats. Furthermore, adrenergic activation of glycogen phosphorylase in the slow-twitch oxidative soleus muscle was compared to the fast-twitch glycolytic epitrochlearis muscle. The glycogen content was 96.4 +/- 4.4 mmol (kg dw)(-1) in soleus muscles. Three hours of incubation with 10 mU/ml of insulin (and 5.5 mM glucose) increased the glycogen content to 182.2+/-5.9 mmol (kg dw)(-1) which is similar to that of epitrochlearis muscles (175.7+/-6.9 mmol (kg dw)(-1)). Total phosphorylase activity in soleus was independent of glycogen content. Adrenaline (10(-6) M) transformed about 20% and 35% (P < 0.01) of glycogen phosphorylase to the a form in soleus with normal and high glycogen content, respectively. In epitrochlearis, adrenaline stimulation transformed about 80% of glycogen phosphorylase to the a form. Glycogen synthase activation was reduced to low level in soleus muscles with both normal and high glycogen content. In conclusion, adrenaline-mediated glycogen phosphorylase activation is enhanced in rat soleus muscles with increased glycogen content. Glycogen phosphorylase activation during adrenaline stimulation was much higher in epitrochlearis than in soleus muscles with a similar content of glycogen.  相似文献   

13.
Muscle glycogenolytic flux and lactate accumulation during exercise are lower after 3-7 days of "short-term" aerobic training (STT) in men (e.g., Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, and Farrance B. J Appl Physiol 72: 484-491, 1992). We hypothesized that 5 days of STT would attenuate pyruvate production and the increase in muscle tricarboxylic acid cycle intermediates (TCAI) during exercise, because of reduced flux through the reaction catalyzed by alanine aminotransferase (AAT; pyruvate + glutamate <--> 2-oxoglutarate + alanine). Eight women [22 +/- 1 yr, peak oxygen uptake (Vo2 peak) = 40.3 +/- 4.6 ml. kg-1. min-1] performed seven 45-min bouts of cycle exercise at 70% Vo2 peak over 9 days (1 bout/day; rest only on days 2 and 8). During the first and last bouts, biopsies (vastus lateralis) were obtained at rest and after 5 and 45 min of exercise. Muscle glycogen concentration was approximately 50% higher at rest after STT (493 +/- 38 vs. 330 +/- 20 mmol/kg dry wt; P 相似文献   

14.
A single administration of LiCl (0.5, 2 and 4 mmol/kg) to adult male albino rats produced a dose dependent increase of Li level in plasma, whole brain and brain regions. The concentration of Li in whole brain and brain regions was much less than that in plasma. Further, it is also found that concentration of Li in plasma reached a peak at 8 hr while that of Li in whole brain and brain regions reached a peak at 12 hr after the administration. The distribution and retention of Li was found to be highest in hypothalamus followed by striatum, pons-medulla, cerebellum and cerebral cortex. Daily administration of LiCl at a dose of 0.5 and 2 mmol/kg/day showed a time and dose dependent increase in plasma Li level up to a period of 21 consecutive days. But at higher dose (4 mmol/kg/day), on the other hand, under similar condition showed a time dependent increase in plasma Li level up to a period of 14 consecutive days and then gradually decreased with prolongation of treatment to 21 consecutive days. In brain there was no such decrease, rather increase in Li level was observed with the prolongation of duration of treatment, highest concentration of Li was found in hypothalamus and striatum than the rest of the brain regions. These results suggest that under short term treatment with LiCl, the clearance rate of Li in brain cell is much slower than that in plasma. Both single and long-term exposure of LiCl produces a dose dependent increase of Li in plasma, whole brain and brain regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The therapeutic action of 3.5 mg glibenclamide (HB 420) once a day for six weeks was evaluated in ten mild NID diabetics previously treated with diet only. Stable HbA1, insulin secretion during hyperglycaemic clamp (100 mg/dl over the baseline in the first study, and at the same level in the second one), peripheral sensitivity expressed as the amount of dextrose infused per Kg per min (M-coefficient), the glucose metabolic clearance rate (MCR) and the M/I ratio were measured. Circulating monocytes were separated to assess insulin binding before and after treatment. The results included a significant decrease in HbA1 (7.5 +/- 0.3 against 8.4 +/- 0.4%, P less than 0.005), increased steady-state (100-120 min.) plasma insulin (31 +/- 4.4 against 25.7 +/- 3.9 microU/ml), a significant increase in M-coefficient (4.02 +/- 0.62 against 2.49 +/- 0.31 mg/Kg/min, P less than 0.01), and MCR (1.90 +/- 0.34 against 1.18 +/- 0.18 ml/Kg/min, P less than 0.025) and an increase in the M/I ratio (14.6 +/- 1.9 against 11.2 +/- 1.7). All subjects displayed an increase in total insulin binding (4.03 +/- 0.31% against 2.79 +/- 0.34%, P less than 0.001) and affinity constants (Ke = 8.3 +/- 0.6 against 6.6 +/- 0.4 X 10(7) M-1, P less than 0.05). Since the M/I ratio increased in only 7/10 subjects and since there was no significant correlations between the percentage increase in M and MCR and the plasma insulin increase, whereas the increase in R0 was significant, it is felt that the euglycaemizing action of low doses of glibenclamide is primarily peripheral.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Administration of LiCl (2-4 mmol/kg/day, po) to adult male albino rats for 7 consecutive days increased the catabolism of dopamine (DA) in striatum (ST) and noradrenaline (NA) in hypothalamus (H). Extension of the period of treatment with LiCl (2-4 mmol/kg/day, po) to 14 consecutive days increased catabolism of DA in CX (cerebral cortex) and PM (pons-medulla) and NA in H, and decreased metabolism of DA in ST and NA in PM. Further prolongation of treatment with LiCl (2 or 4 mmol/kg/day, po) for 21 consecutive days greatly affected DA and NA metabolism in the respective brain regions. These results, thus suggest that LiCl produces region specific differential action depending on its dosage and duration of treatment in catecholaminergic activity in rat brain.  相似文献   

17.
We tested the theory that links the capacity to perform prolonged exercise with the size of the muscle tricarboxylic acid (TCA) cycle intermediate (TCAI) pool. We hypothesized that endurance training would attenuate the exercise-induced increase in TCAI concentration ([TCAI]); however, the lower [TCAI] would not compromise cycle endurance capacity. Eight men (22 +/- 1 yr) cycled at approximately 80% of initial peak oxygen uptake before and after 7 wk of training (1 h/day, 5 days/wk). Biopsies (vastus lateralis) were obtained during both trials at rest, after 5 min, and at the point of exhaustion during the pretraining trial (42 +/- 6 min). A biopsy was also obtained at the end of exercise during the posttraining trial (91 +/- 6 min). In addition to improved performance, training increased (P < 0.05) peak oxygen uptake and citrate synthase maximal activity. The sum of four measured TCAI was similar between trials at rest but lower after 5 min of exercise posttraining [2.7 +/- 0.2 vs. 4.3 +/- 0.2 mmol/kg dry wt (P < 0.05)]. There was a clear dissociation between [TCAI] and endurance capacity because the [TCAI] at the point of exhaustion during the pretraining trial was not different between trials (posttraining: 2.9 +/- 0.2 vs. pretraining: 3.5 +/- 0.2 mmol/kg dry wt), and yet cycle endurance time more than doubled in the posttraining trial. Training also attenuated the exercise-induced decrease in glutamate concentration (posttraining: 4.5 +/- 0.7 vs. pretraining: 7.7 +/- 0.6 mmol/kg dry wt) and increase in alanine concentration (posttraining: 3.3 +/- 0.2 vs. pretraining: 5.6 +/- 0.3 mmol/kg dry wt; P < 0.05), which is consistent with reduced carbon flux through alanine aminotransferase. We conclude that, after aerobic training, cycle endurance capacity is not limited by a decrease in muscle [TCAI].  相似文献   

18.
Atorvastatin (ATV) limits infarct size (IS) by activating Akt and ecto-5-nucleotidase, which generates adenosine. Activated Akt and adenosine activate endothelial nitric oxide synthase (eNOS). When given orally, high doses (10 mg/kg) are needed to achieve full protection. We determined whether dipyridamole (DIP), by preventing the reuptake of adenosine, has a synergistic effect with ATV in reducing myocardial IS. In this study, rats received 3-days of the following: water, ATV (2 mg.kg(-1).day(-1)), DIP (6 mg.kg(-1).day(-1)), or ATV + DIP. In addition, rats received 3-days of the following: aminophylline (Ami; 10 mg.kg(-1).day(-1)) or Ami + ATV + DIP. Rats underwent 30 min of myocardial ischemia followed by 4 h of reperfusion (IS protocol), or hearts were explanted for immunoblotting. As a result, IS in the controls was 34.0 +/- 2.8% of the area at risk. ATV (33.1 +/- 2.1%) and DIP (30.5 +/- 1.5%) did not affect IS, whereas ATV + DIP reduced IS (12.2 +/- 0.5%; P < 0.001 vs. each of the other groups). There was no difference in IS between the Ami alone (48.1 +/- 0.8%) and the Ami + ATV + DIP (45.8 +/- 2.9%) group (P = 0.422), suggesting that Ami completely blocked the protective effect. Myocardial adenosine level in the controls was 30.6 +/- 3.6 pg/microl. ATV (51.0 +/- 4.9 pg/microl) and DIP (51.5 +/- 6.8 pg/microl) caused a small increase in adenosine levels, whereas ATV + DIP caused a greater increase in adenosine levels (66.4 +/- 3.1 pg/microl). ATV and DIP alone did not affect myocardial Ser473 phosphorylated-Akt and Ser1177 phosphorylated-eNOS levels, whereas ATV + DIP significantly increased them. In conclusion, low-dose ATV and DIP had synergistic effects in reducing myocardial IS and activation of Akt and eNOS. This combination may have a potential benefit in augmenting the eNOS-mediated pleiotropic effects of statins.  相似文献   

19.
It has been suggested that cyclosporin A (CsA) nephrotoxicity can be reduced by the concomitant administration of omega-3 fatty acids or vitamin E. The present study was designed to establish whether the effect of the above substances can also be demonstrated in rats with hereditary hypertriglyceridemia (HTG) whose sensitivity to the nephrotoxic effect is greater than in control AVN rats. CsA administration at a dose of 10 mg/kg/day to HTG rats resulted in a significant rise (p<0.001) in serum levels of creatinine (from 66.0+/-7.6 to 108.4+/-11.6 micromol/l) and urea (from 8.3+/-0.7 to 22.3+/-18 mmol/l) which was not found in AVN rats. The baseline values of systolic blood pressure (SBP) were significantly higher in HTG rats. However, in both strains CsA administration was associated with a similar SBP increase which was not prevented by omega-3 fatty acids (EPAX) or vitamin E administration. Concomitant administration of CsA with EPAX at a dose of 600 mg/kg b.w./day in HTG rats prevented the rise in the serum levels of creatinine (65.4+/-14.7 micromol/l) and reduced the increase in the serum urea levels (11.9+/-7.6 mmol/l). Concomitant administration of CsA and vitamin E (at a dose of 25 mg/kg/day) also reduced the increase (p<0.05) in the serum levels of creatinine (70.7+/-14.3 micromol/l) and urea (9.8+/-3.4 mmol/l) compared to the effects elicited by the administration of CsA alone (p<0.05). Administration of CsA alone or in combination with EPAX or vitamin E did not have a marked effect on diuresis, proteinuria, urinary osmolality, urinary excretion of urea, creatinine and potassium. Under all experimental conditions, the rate of urinary excretion of sodium in HTG rats was significantly lower (p<0.01) than in AVN rats. The results obtained support the assumption that omega-3 fatty acids and vitamin E at the doses used reduce CsA nephrotoxicity in rats with hereditary hypertriglyceridemia whose sensitivity to the nephrotoxic effect of CsA is significantly higher than in AVN rats.  相似文献   

20.
This study examined 1) the plasma taurine response to acute oral taurine supplementation (T), and 2) the effects of 7 days of T on muscle amino acid content and substrate metabolism during 2 h of cycling at approximately 60% peak oxygen consumption (VO2peak). In the first part of the study, after an overnight fast, 7 volunteers (28+/-3 yr, 184+/-2 cm, 88.0+/-6.6 kg) ingested 1.66 g oral taurine doses with breakfast (8 AM) and lunch (12 noon), and blood samples were taken throughout the day. In the second part of the study, eight men (22+/-1 yr, 181+/-1 cm, 80.9+/-3.8 kg, 4.21+/-0.16 l/min VO2peak) cycled for 2 h after 7 days of placebo (P) ingestion (6 g glucose/day) and again following 7 days of T (5 g/day). In the first part of the study, plasma taurine was 64+/-4 microM before T and rose rapidly to 778+/-139 microM by 10 AM and remained elevated at noon (359+/-56 microM). Plasma taurine reached 973+/-181 microM at 1 PM and was 161+/-31 microM at 4 PM. In the second part of the study, seven days of T had no effect on muscle taurine content (mmol/kg dry muscle) at rest (P, 44+/-15 vs. T, 42+/-15) or after exercise (P, 43+/-12 vs. T, 43+/-11). There was no difference in muscle glycogen or other muscle metabolites between conditions, but there were notable interaction effects for muscle valine, isoleucine, leucine, cystine, glutamate, alanine, and arginine amino acid content following exercise after T. These data indicate that 1) acute T produces a 13-fold increase in plasma taurine concentration; 2) despite the ability to significantly elevate plasma taurine for extended periods throughout the day, 7 days of T does not alter skeletal muscle taurine content or carbohydrate and fat oxidation during exercise; and 3) T appears to have some impact on muscle amino acid response to exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号